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Recent advances in Next Generation Sequencing (NGS) technology, generate a large volume of genetic
data which is now accessible for analysis. From raw data to published results, an efficient and automated
pipeline for the analysis of genetic data will revolutionize modern research. Individual programs can be
optimized and placed in a science gateway for researchers to customize their pipelines. The gateway
provides the ability to upload data and an interface for users to select the desired command line
parameters through graphical means. Additionally, the programs themselves are wrapped and scaled to
large parallel architectures, improving the performance to a level that is out of reach for single machines
or small clusters. In particular, the addition of reliable high performance computing (HPC) programs to
the science gateways opens the doors to computational ability, even for scientists with little to no
programming experience or access to their own HPC resources. My research hopes to further the efforts
to make computational power accessible for all scientists. I have looked at several downstream analysis
programs, including the genotype imputation tool MaCH, and HSP-BLAST. The compilation and
improvement to MaCH’s current documentation will make the program easier for researchers to
understand and use. Also, scripts created for HSP-BLAST provide an automated way to look at all vs.
all BLAST hits, while capitalizing on HSP-BLAST's high performance capabilities. Continuing to
automate and simplify the analysis processes will greatly improve future research efforts in the future.

1 INTRODUCTION

Since the first massive discovery by Watson and
Crick in 1953, advances in the world of DNA
sequencing continue to be made and the ideas have
become ubiquitous in the scientific community.
DNA is comprised of four nucleotides, adenine,
thymine, guanine, and cytosine. These puzzle pieces
pair with each other to ultimately form the double
helix structure that is well-established in the
scientific community. The genetic code found in
DNA is then transcribed into RNA, and
subsequently translated into amino acids that create
the proteins critical for all of life’s processes [1].
When starting the analysis of genetic data,
there is a general workflow that can be followed. It
typically begins with sequencing the collected data,

and then sending that data through an assembly
process. After you have an assembled sequence or
genome the data can be passed to a number of
downstream analysis programs. Each of these
analysis programs can have a different task, like
MUSCLE for multiple sequence alignment or
BLAST for sequence similarity between a query
and a database. After the data has been analyzed for
the needs of the researcher, the results must be
parsed into readable output formats or properly
visualized for publications and presentation [7].

Challenges arise with the sheer abundance
of data in the realm of genetic research. Terabytes
of data are being generated in a matter of days, and
scientists studying this data must pioneer new
methods for the storage, management, and analysis
of it. Computer science, specifically High



Performance Computing (HPC), had become
increasingly enmeshed with the biology to fill that
need. Although, while it brings unparalleled
processing power to the table, it also requires a new
set of skills that many biology researchers do no
possess. Software developed for bioinformatics is
often highly specialized and intricate. Many
programs don’t have a graphical interface for users,
require tedious installation and runtime procedures,
provide convoluted and highly technical
documentation, and produce output that is unhelpful
without further processing [7]. Today’s researchers
require access to the computational power of these
methods, but unless improvements are made to the
system itself knowledge will remain out of reach for
scientists with few computational skills.

2 METHODS

This research focused on two downstream analysis
applications: MaCH and HSP-BLAST. MaCH is an
open-source genotype imputation program
developed by the University of Michigan. Genotype
imputation is a useful tool for scientists looking to
fill in missing data from a set of genotypes [3]. The
program accepts a set of genotypes, labeled with
specific markers, and a set of reference files labeled
with those same markers. Based on a statistical
model, the program then imputes the missing
genotypes and outputs the completed file along with
a file containing data to describe the accuracy and
quality of its prediction [5] . MaCH currently
utilizes a command line interface, and the user must
be able to install and configure the program on their
own. Unfortunately, as is the case with much of the
available free software, the documentation for
MaCH was scattered across several webpages,
outdated, and difficult to understand. To solve this
problem and make MaCH more accessible to its
users, the current README file in the source code
was modified and extended to improve readability.
Sections were added to describe each of the input
file requirements, and explain the statistics found in
each of the output files. Links to reference data in

the correct file formats were specified as well.
Every command line option mentioned on the
webpages was documented and sample commands
were given to illustrate MaCH’s problem solving
abilities in a variety of situations. At the end, the
documentation demonstrated quality assurance tests
and gave links to common programs developed for
further analysis of MaCH output data. Additionally,
a step-by-step tutorial on how to download, install
and configure MaCH was placed at the beginning of
the file.

BLAST works by taking a query sequence
and using a heuristic algorithm to find subject
sequences from a selected database that are similar
to the query. BLAST results can be extremely
useful when trying to determine a gene’s function in
a newly sequence genome. All v. all BLAST results
are especially useful in the prediction of orthologs:
a gene that performs the same function in different
organisms which have evolved from a common
ancestor but have since diverged due to a speciation
event. Again, given an gene with an unknown
purpose, finding an ortholog for that gene can
pinpoint its function [6]. For this particular
problem, HSP-BLAST was used. HSP-BLAST was
developed by Rekepalli, et al and provided a
parallel means to run the same algorithms as the
serial NCBI version. HSP-BLAST scales linearly to
large numbers of cores, and substantially reduces
the compute time needed to run large-scale analyses
[7]. An all v. all BLAST was performed on this
dataset using the Darter supercomputer and Oak
Ridge National Laboratory. Given three different
datasets of varying sizes, a database was created for
each dataset. Afterwards, every sequence in the
dataset was used as a query sequence over its
corresponding database. The hits were recorded and
output in the default tabular format. From that
tabular output, a python script was developed to
parse the useful information from the file, remove
all matches above a certain threshold value
specified by the user, and calculate the percentage
overlap between each file in the database. The
percentage was calculated by determining the



number of matches, or hits, found in each file of the
dataset from a given file of sequences from the
same dataset. That unique number of hits per
subject file was divided by the total number of
sequences in the subject file to yield the percentage
of the subject file matched by sequences from the
query file.

3 RESULTS

Improving the quality of documentation available to
MaCH users will increase the usability of the
program, especially for those who have limited
computational experience. Before it was difficult to
find information about completing basic tasks, but
now researchers have a single guide to reference
and can spend more time where it matters—
applying the results. This model should be a goal
for all open-source software, especially that
bioinformatics where many of the target users are
experts in areas other than computer science. (For
the contents of this file, see Appendix A.)

In the all v. all HSP-BLAST, the results
were largely as expected. Theoretically when
running an all v. all BLAST each file should have a
100 percent overlap with itself; that is, each query
sequence in a file should at least have itself as a
match. Additionally, we included a file, “ALL,” in
each dataset that was the concatenation of all the
sequences in the entire dataset. Using the previous
assumption, this file was predicted to have a 100
percent overlap with every other input file.
Likewise, each input file was expected to have an
overlap with the ALL file that was proportional to
the number of sequences it contributed to the
dataset. In these three ways, our results matched the
hypotheses. Every file had a nearly 100 percent
overlap with itself, and the ALL file had a nearly
100 percent overlap with every file of the dataset.
When plotting the results from each specific file,
and comparing the three datasets we predicted the
lines to have a similar shape and that the overlap
percentages would increase with the size of the
database. It was here that the results differed
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slightly from the theory. In most cases the plotted

lines were of a similar shape; however, there were
several files where the largest dataset had overlap
percentages that dipped below that of the smallest
dataset. Similarly, the results were not symmetric—
for example, if file A had 60 percent overlap with
file B, B did not always have a 60 percent overlap
with A. These anomalies and their origin should be
the focus of further exploration. (For a sample of
these visualizations, see Appendix B.)

4 FUTURE WORK

Further investigation into the results from all v. all
HSP-BLAST could lead to valuable insights about
the dataset that was used, and continued
improvements in the documentation of analysis
software will increase their usefulness for
researchers.

Ultimately, however, the future lies in the
establishment and expansion of science gateways.
These gateways will provide a secure, centralized
location for researchers to upload their data.
Software for all steps of the a genomic analysis
workflow will be available from within the portal.
These may be customizable, or situated into
predefined workflows for the user. After uploading
the data, scientists will be able to choose their
programs and set the proper parameters for their
input through a graphic interface. After the jobs are
submitted, output is collected in a centralized
location—either for input into another program, or
to be interpreted by the researcher.

PoPLAR is one such gateway. The Portal for
Petascale Lifescience Applications and Research is
the work of Rekepalli, et al, and it aims to improve
the quality and accessibility of bioinformatics tools
for the modern scientist. POPLAR is set apart by its
use of Highly Scalable Parallel (HSP) architecture
which currently allows three programs to make use
of the vast resources available on today’s
supercomputers. BLAST, HMMER, and MUSCLE
have already been modified for the HSP
architecture, and the goal is for many more to



follow suit. This gateway, much like the generic
description above, allows users to sign in, upload
data, perform tricky computational procedures with
the help of a web-based interface, and download
results [7]. While still under development now, in
the future this gateway will offer tools from the
beginning stages of genome assembly through the
latest in downstream analysis tools.

5 CONCLUSIONS

Biological research produces immense amounts of
data and its scope continues to grow with each
passing year. In order to keep up with such large-
scale problems, new computing strategies must be
adopted. However, these often come with
disadvantages, like insufficient documentation or
requiring computational abilities beyond the reach
of many scientists. Creating improved
documentation for the genotype imputation program
MacCH is a step towards making available software
more accessible for all its users. By using HSP-
BLAST to run all v. all tests on three datasets,
valuable information was produced that can now be
further analyzed in an additional study. The use of
parallel architectures greatly reduced the time
needed to preform these tests, and a parsing and
visualization script made the results readable for
any researcher. Soon a science gateway approach,
such as that used by POPLAR, will replace the
scattered command line utilities currently available.
The gateways will allow users with all levels of
computational experience to upload raw files,
analyze data, and share results—all using a graphic
interface that eliminates the need for a strong
background in computer science or the availability
of technical experts.
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APPENDIX A.

MaCH is a tool for haplotyping, genotype imputation and disease association
analysis developed by Goncalo Abecasis and Yun Li. MaCH was first used to
imputed missing genotypes in our FUSION genomewide association study (Scott et
al, Science, 2007) and has since been used in the analysis of many other GWAS.

This file explains how to install MaCH 1.0 on NICS computing resources,
although the instructions are relevant for all Linux systems. Below the
numbered instructions is a modified and extended version of the README file
provided by the developers to explain the options, inputs, and how to run MaCH
1.0. This file includes information from both the MaCH homepage and wiki as
well.

Contents: Installation, Input, Options, Execution/Examples, Output
Quality Assessment, Further Analysis, Troubleshooting,
Additonal Resources

1. Get the tar file from the MaCH website using the following
command:

wget http://www.sph.umich.edu/csg/abecasis/MaCH/
download/mach.1.0.18.source.tgz

2. Untar the files using the tar command.
tar -xf mach.1.0.18.source.tgz

3. Navigate to the directory containing 'Makefile,' if
necessary.

cd directory/with/new/files

4. Ensure you are using g++ as the compiler. If you use NICS
resources, you should use the CC wrapper; and you may have
to swap modules. Use 'module list', 'module avail' and
'module swap <old> <new>' commands to accomplish this.



make all
OR (NICS-- ie. Darter)

module swap PrgEnv-cray PrgEnv-gnu
module list (look for gcc)

make all CXX=CC (to use the CC compiler wrapper)

5. Install the binaries in /usr/local/bin by using the
following command:

make install
OR
make install=/directory/to/install

6. Follow the instructions in the next section to create input
files.

7. Run MaCH 1.0 using the examples and options provided below,
or use the provided PBS script. (darter.pbs)

MaCH 1.0 needs a Merlin format data and pedigree files as input.

A simple MaCH data file lists the names of a series of genetics markers. These
are preceded by an 'M' and each marker name has its own line. The data file
should look like this:

M markerl
M marker2

The pedigree file contains the actual genotpyes. It should list one individual
per row. Each row should start with an family id and individual id, followed by
a father and mother id (which should both be ©, 'zero', since machl assumes
individuals are unrelated), and sex. These initial columns are followed by a
series of marker genotypes, each with two alleles. Alleles can be coded



as 1, 2, 3, 4 or A, C, G, T.
For example:

FAM1001 ID1234 © 0 M 11 12 22
FAM1002 ID1234 © (%] F 12 22 33

OR

FAM1001 ID1234 © 6 M AA AC ccC
FAM1002 ID1234 © %] F AC ccC GG

To make the genotypes easier to read, '/' may be used between the two alleles.
This pedigree is equivalent:

FAM1001 ID1234 © e M A/A A/C c/C
FAM1002 ID1234 © (%] F A/C c/C G/G

Missing genotypes may be encoded with a '.' or a '@'. The following two lines
are
both missing the first genotype.

FAM1001 ID1234 © 0 M .. A/C c/C
FAM1002 ID1234 © (%] F o/ c/C G/G

For many analyses, but in particular for genotype imputation, it can be very
helpful to provide a set of reference haplotypes as input. Reference haplotypes
can include genotypes for markers that were not examined in your own sample but
which can, often, be inputed based on genotypes at flanking markers. Most
commonly, these haplotypes might be derived from a public resource such as the
International HapMap Project and, eventually, the 1000 Genomes Project.

You can retrieve a current set of phased HapMap format haplotypes from:
http://hapmap.org/downloads/phasing/2007-08 rel22/phased/

HapMap III phased haplotypes are in different format, you will need to use
converted haplotypes available at:
http://www.sph.umich.edu/csg/yli/mach/download/HapMap3.r2.b36.html



Additional reference files (e.g., those based on data from the 1000 Genomes
Project; combined reference files) can be found through links at:
http://www.sph.umich.edu/csg/yli/mach/download/

Phase haplotype information is encoded in two files. The first file (which MACH
calls the "snp file") lists the markers in the phased haplotype. The second
file (which MACH calls the "haplotype file") lists one haplotype per line. If
you retrieved these files from the HapMap website, simply combine the -
hapmapFormat option with the --snp option to indicate the name of the HapMap
legend file and the --haps option to indicate the name of the file with phased
haplotypes.

The snp file should look like this:

markerl
marker2

If including your own haplotype reference file, it should be formatted in the
following way:

FAMILY1->PERSON1 HAPLO1 CGGCGCGCTTGGC
FAMILY1->PERSON1 HAPLO2 CGGCGCGTCCAGC
FAMILY2->PERSON1 HAPLO1 GGGCGCGCTTGGC
FAMILY2->PERSON1 HAPLO2 GGAAGCACTCGGC

If you provide a MACH a set of reference haplotypes as input, the marker order
in

the phased haplotypes overrides any marker order that may be specified in the
pedigree and data files that contain the genotype data.

Additionally, to save space, all input files can be compressed using gzip. MaCH
automatically recognizes this and will decompress the files for you.

The command line options for MaCH 1.0 are listed below. For example usage,
see the next sections.



Option | Description

-d (or --datfile) <file> * | Specify the name of the data file (MERLIN
format)

-p (or --pedfile) <file> * | Specify the name of the pedigree file
(MERLIN)

-h (or --haps) <file> + | Specify a reference haplotype file

-s (or --snps) <file> + | Specify the list of SNPS for haplotype file
--hapmapFormat Used with the -h and -s options for

|

| reference haplotypes from HapMap that

| AREN'T in MaCH format. (-h now indicates
| the file with phased haplotypes and -s

| indicates the legend)

--phase | Request the output of phased chromosomes

--rounds <k> (or -r <k»>) | Use k iterations of Markov sampler;
| recommended = 50

--states <k> | Use a random subset of k haplotypes as
| reference; default = ALL,recommended >= 200

--weighted | Favor individuals with more genotype data
| as the template for haplotyping other
| individuals
--greedy | Use only reference haplotypes (-h)
--geno ~ Infer genotypes at untyped markers
--crossovermap <file> | Specify the file of a crossover map (.rec)
| from a previous MaCH run to be used in
| imputation
--errormap <file> | Specify the file of an error map (.erate)

| from a previous MaCH run to be used
| in imputation



--mldetails

--prefix <name>

--compact

--poll <k>

--samplelnterval <k>

--interimInterval <k>

--dosage

--quality

--mask <n>

--autoFlip

10

Replaces the --geno option when using
crossovermap and errormap options; requests
that MaCH do a maximum likelihood genotype
imputation

Provide additional details with -mle

Specify a prefix for MaCH output files
(.rec, .erate, .info/.mlinfo)

Reduces memory usage

Request intermediate solutions every k
iterations

Output every k rounds based on random

sampling from the last Markov iteration

Output every k rounds by building consensus
from all previous Markov iterations

Generate a .dose file containing dosages
(ie. estimated counts) of the reference
allele in each individual; range = 0.0-2.0

Generate a .qc file containing quality
scores for each imputed genotype; equal to
the posterior probability for the most
likely genotype

Quality assessment; masks a small portion
of the genotypes to compare the imputed
values with the actual values at these
locations; n = the percentage of genotypes
to mask (eg. 2% = 0.02)

Flips alleles in pedigree file according to
base pairing if >2 alleles are found to
have resolved any labeling inconsistency;
will drop markers if the problem remains
unresolved
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* Required parameters for all MaCH runs

+ Additional required parameters to use reference haplotypes
~ Additional required parameters to infer untyped markers

The following will help you use MaCH to haplotype a sample of unrelated
individuals.

FILES:

Obtain a pedigree file and data file (both in Merlin format). Make sure that
markers are ordered according to their physical position.

USEFUL COMMAND LINE OPTIONS:

Specify the data and pedigree files with the -p and -d options,
respectively.

Use the --phase option to request the output of phased chromosomes.

The key parameters for managing the quality of inferred haplotypes and the
amount of computational effort expended in generating them are --rounds and --
states.

--rounds <k> : Larger numbers will result in better solutions. If
there isn't much missing data, a value of 50 should give a reasonable
solution. Larger values will provide better solutions.

--states <k> : Larger values will generate more accurate solutions,
but may slow things down and require more memory. A value >=200
typically provides quite good solutions. The default is to use all
available haplotypes.

If missing data is not distributed evenly among the available individuals
consider the --weighted parameter.

--compact will reduce memory use.
--poll <k> will request intermediate solutions every k iterations.

EXAMPLE USAGE:
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mach -d sample.dat -p sample.ped --rounds 50 --states 200 --phase

Genotypes at untyped markers for each individual are inferred by comparing the
available genotypes to those in other individuals that have been typed at
higher density. Individuals typed at high density will often come from public
resources, such as the HapMap.

The following will help you use MaCH to infer genotypes at untyped markers.
There are two strategies, although #2 is more commonly used. In addition, there
are a couple methods to speed up the imputation process. The first, labeled as
strategy #3, is using data files from previous MaCH runs to improve
performance. The second, labeled as #4, is a 2-step imputation process.

In general, you should use the --geno option, regardless of how you include the
reference haplotypes. This will cause the behavior described in the first
paragraph.

= STRATEGY #1 =
INCLUDE REFERENCE (eg. HAPMAP) GENOTYPES TO YOUR DATASET

FILES:

A simple way to infer missing genotypes is to create one large pooled
dataset, following the input guidelines above. Some individuals will have
missing data and others will have much more complete genotyping information.
USEFUL COMMAND LINE OPTIONS:

Estimate the most likely genotype for each individual with --geno.

Use the command line options --dosage and --quality options to request

additional information about each inferred genotype (See options table

above).

= STRATEGY #2 =
USE REFERENCE (eg. HAPMAP) HAPLOTYPES AS INPUT:

FILES:
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If you select this option, you should generate a file that includes a set

of reference haplotypes. These can be typed at more markers than are available
in your sample. You will also need a small file that lists all the markers
that appear in the phased haplotypes.

Then, to estimate missing genotypes, you'll need to provide the Merlin
format data and pedigree files, the reference haplotypes and the list of SNPs
in the reference haplotypes.

USEFUL COMMAND LINE OPTIONS:
Name the reference haplotype and snp list files with --haps and --snps.

If you use the --autoFlip option, MaCH 1.0 will try to automatically resolve
problems with alleles that are inconsistently labeled in your sample and the
reference panel (by flipping strands and dropping markers where this trivial
solution does not help).

Most of the time, you'll get good estimates of genotypes at untyped markers
using the --rounds <k> and --greedy option.

If you don't use the --greedy option, you can control computational

effort with the --weighted and --states <k> options. However, this
alternative strategy generally requires more iterations before converging to
a good solution.

EXAMPLE USAGE:

mach -d sample.dat -p sample.ped -h hapmap.haplos -s hapmap.snps --rounds 50
--greedy --geno

mach -d sample.dat -p sample.ped -h hapmap.haplos -s hapmap.snps --rounds
500 --states 200 --geno

mach -d sample.dat -p sample.ped -h hapmap.haplos -s hapmap.snps --rounds
500 --states 200 --weighted --geno

*NOTE: It is very important to ensure that alleles are labeled consistently in
your sample and in the reference panel. MaCH 1.0 will automatically warn you
about alleles that differ in frequency greatly between your sample and the
reference panel or that have different allele names in the two subsets of data.
However, these checks will not catch all inconsistently labeled alleles.
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= STRATEGY #3 =

USING DATA FROM PREVIOUS RUNS TO SPEED UP IMPUTATION

The standard genotype imputation approach, described as strategy #2 works best
when you execute a large number of iterations of the Markov Chain (50-100).
These iterations are used to simultaneously update the crossover map (which
determines the likely locations for haplotype transitions), to update the
errorrate map (which flags unusual markers), and to estimate the missing
genotypes.

An alternative approach is to use a single set of estimates for the crossover
and error rate maps and, conditional on these, to find the most likely
genotypes. This approach seems to work quite well.
FILES:
You will include the files associated with the -d, -p, -s, and -h options as
well as the.rec and .erate files to specify estimates of error and crossover
rates from a previous MaCH run.
If you don't have an available set of map estimates, you can request that
MaCH estimate them using a small number of iterations of the Markov Chain
with the --rounds <k> option.
USEFUL COMMAND LINE OPTIONS:

Request the --mle option instead of --genos.

Use --crossovermap to specify the .rec file and --errormap for the .erate
file.

EXAMPLE USAGE:

mach -d sample.dat -p sample.ped -h hapmap.haplos -s hapmap.snps
--crossovermap mach.rec --errormap mach.erate --greedy --mle

mach -d sample.dat -p sample.ped -h hapmap.haplos -s hapmap.snps --greedy
--mle --rounds 5

= STRATEGY #4 =
TWO-STEP IMPUTATION FOR IMPROVED SPEED

1. ESTIMATING MODEL PARAMETERS
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The first step is to build a model that relates your samples to the haplotypes
in the reference panel. This model includes both an estimate of the "error"
rate for each marker (an omnibus parameter which captures both genotyping
error, discrepancies between your platform and the reference panel, and
recurrent mutation) and of "crossover" rates for each interval (a parameter
that describes breakpoints in haplotype stretches shared between your samples
and the reference panel).

The key choices for this first step are the number of iterations expended in
estimating model parameters (specified with the --rounds parameter) and the
number of individuals in your sample to used for model building. In small
samples, it is often okay to include your entire sample in this model parameter
estimation step, in larger samples it is usually sufficient to include a random
subset of 200-500 individuals in this step.

Once all iterations are completed, MACH will store model parameters in two
files, a .rec and a .erate. These files as input for the next step, where model
parameters will be fixed.

2. GENOTYPE IMPUTATION

This step is relatively quick and uses the parameters estimated in the previous
round and calibrated to your specific dataset and genotyping platform to impute
all SNPs in the reference panel in your sampled individuals.

FILES:

Besides the normal files to satisfy the -d, -p, -s, and -h options, you will
be using output from the first MaCH run as input into the second.

USEFUL COMMAND LINE OPTIONS:
Use --crossovermap to specify the .rec file from the previous run.
Use --errormap to specify the .erate file from the previous run.
--prefix will allow you to specify a prefix for the MaCH output files other
than the default "machl". This helps differentiate between step 1 and step 2

files.

Use --greedy and --rounds <k> (or --r <k>).
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The compact option can help save memory when using large datasets.

Use the two options --mle and --mldetails (instead of --geno) to carry out
the maximum lilkelihood genome imputation.

EXAMPLE USAGE:

(1) machl -d gwas.dat -p gwas_subset.ped -s hapmap.legend -h hapmap.phased
--hapmapFormat --greedy -r 100 --prefix stepl
(2) machl -d gwas.dat -p gwas.ped -s hapmap.legend -h hapmap.phased

--hapmapFormat --crossover stepl.rec --errormap stepl.erate --greedy --mle --
mldetails --prefix step2

For every MaCH 1.0 run, whether just haplotyping or performing genotype
imputation, two output files are generated:

Filename | Description

<prefix>.out.rec | This file contains per marker error rates. It has 3
columns labeled Marker, AvgRate, and LastRate.

<prefix>.out.erate | This file contains the mosaic crossover rates. It has
3 columns labeled Interval, AvgRate, and LastRate.

When MaCH is used to haplotype unrelated individuals a <prefix>.out file is
generated which contains the phased chromosomes.

MaCH 1.0 generates a table that provides useful information about each marker.
The filename for the table has the extension .info when the --geno option is
used

or .mlinfo with the --mle option.

.info Column Name | Description
SNP | Marker name for the SNP
ALl | Allele 1 label (numerically coded)

AL2 | Allele 2 label (numerically coded)



Freql
MAF

Quality

Rsq
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| Frequency for allele 1
| Minor allele frequency

The estimated probability that an average imputed
genotype will match an experimental genotype(this
should be 1.0 for genotyped markers, and will
often be less for untyped markers).

| An estimate of the r-squared correlation between
| an estimated genotype scores and true genotypes.

Note that higher quality scores for a given frequency are typically better
imputed; however, it is difficut to compare these values for markers with
different minor allele frequencies.

Also note that typically a cutoff of ©.30 for the Rsq value will flag most of
the poorly imputed SNPs, but only a small number (<1%) of well imputed SNPs.

Filename

Description

<prefix>.

<prefix>.

<prefix>.

<prefix>.

<prefix>.

<prefix>.

out.

out.

out.

out

out

qc |

dose

.mldose|

.mlgc *|

Contains the best-guess (ie. most likely) genotype for
each individual at each SNP (with --geno option)

Contains a quality scores for each imputed genotype.
The quality score is the posterior probability for the
most likely genotype, ranging from ©-1. (with -geno)

Contains dosages (ie. estimated counts) of the
reference allele (All in .info) in each individual.
These estimates may be fractional and range from 0.0
to 2.0 (with --geno)

Contains the best-guess (ie. most likely) genotype for
each individual at each SNP

Contains dosages (ie. estimated counts) of the
reference allele (All in .info) in each individual.
These estimates may be fractional and range from 0.0
to 2.0 (with --mledetails)

Contains a quality scores for each imputed genotype.
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| The quality score is the posterior probability for

| the most likely genotype, ranging from 0-1.

<prefix>.out.mlprob*| Contains posterior probabilities for the Al1/All and
| Al1/Al2 genotypes at each marker for each individual.

* Only generated with -mle and -mldetails options. (.mldose and .mlgc can be
individually generated using --dosage and --quality options with --mle)

Some files will be compressed to save disk space. Output files with an
additional .gz extension contain all the valid information and are usable in
MaCH programs.

One simple way to empirically assess quality of the solutions generated by MaCH
is to use the mask option. This option hides a small proportion of genotypes
from the haplotyper and then compares the imputed genotypes at these locations
with the actual genotypes.

EXAMPLE USAGE:
mach -d sample.dat -p sample.ped --rounds 50 --states 200 --mask 0.02

mach -d sample.dat -p sample.ped -h hapmap.haplos -s hapmap.snps --rounds 50
--greedy --mask 0.02

A better approach is to mask a small proportion of SNPs (vs. genotypes in the
above simple approach). One can generate a mask.dat from the original .dat file
by simply changing the flag of a subset of markers from M to S2 without
duplicating the .ped file. Post-imputation, one can use CalcMatch and doseR2.pl
to estimate genotypic/allelic error rate and correlation respectively. Both
programs can be downloaded from:
http://www.sph.umich.edu/csg/ylwtx/software.html

Note that any masking procedure should be performed as a separate quality
verification measure. All availabe information should be used for production.

For more information about the interpretation of these quality measures, please
see the FAQ page on the MaCH wiki (link below).
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For further analysis of MaCH output, try mach2dat.

After you have performed the imputation, you can directly use MaCH output to
assess association for quantitative and qualitative traits in unrelated
samples. You will need the .ped and .dat files in Merlin format to specify the
disesase status or quantitative trait of interest (indicated with A and T
respectively in the .dat file). Then, you can run the association using the
following line:

mach2dat -p myfile.ped -d myfile.dat --infofile myfile.mlinfo --dosefile
myfile.mldose

where myfile.mlinfo and myfile.mldose are the MaCH output files.

You can also add covariates to the phenotype .ped and .dat files if you want to
adjust your test for other variables.

Please note that mach2dat analyzes only unrelated samples. If you input a
pedigree with family relationships, those will be ignored.

Find the latest version at the Li software page:
http://www.unc.edu/~yunmli/software.html

If you see this message-- "undefined symbol: gzopen64" -- recompile the program
using the commands below:

make clear
make all

For other problems or questions, consult further documentation on the MaCH
homepage or the wiki. If problems persist, email Yun Li or Goncalo Abecasis
(contact information provided online).
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For additional information, tutorials, downloads, and FAQs please see the MaCH
homepage at:

http://www.sph.umich.edu/csg/abecasis/MaCH/index.html
Or check out the wiki:
http://genome.sph.umich.edu/wiki/MaCH
If you use MaCH, mach2qtl or mach2dat, please cite:

Li Y, Willer CJ, Ding J, Scheet P and Abecasis GR (2010) MaCH: using
sequence
and genotype data to estimate haplotypes and unobserved genotypes.
Genet
Epidemiol 34:816-834.
Li Y, Willer CJ, Sanna S and Abecasis GR (2009) Genotype Imputation. Annu
Rev Genomics Hum Genet 10:387-406.

And, if you download MaCH, you should register your name and email on the MaCH
homepage to receive updates and bug-fixes.
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APPENDIX B.

All of the images in this document were generated with an E-value threshold of 1x10-3.

HEAT MAPS:

ALAl  ATHAI CCLAI CREAI MIRAl OSAA PPAAl PTRAl STAl STUA THAAl ZMAAl

All_Al
ATH_AI
CCLAI
CRE Al
MTR_Al
0SA_Al
PPA Al
PTR_AI
SIT Al
STU Al
THA Al

This heat map represents the all v. all BLAST run using the [file]_AllHits_protein.fa dataset. The darker
colors represent higher percentage overlap values between the files. The files on the left side of the
image are the query files, and the files at the top of the image represent the file where the “hits” were
found. The All_AL file was not found in the original dataset—it is a concatenation of the unique sequences
from each of the other files in the dataset. Percentages were calculated by taking the number of unique
hits found in subject file B from sequences in query file A, and dividing that number by the number of
unique sequences in file B.

ZMA Al

All.Co ATHCo CCLCo CRECo MTRCo OSACo PPACo PIRCo ST Co STUCo THACo ZMACo

This heat map represents the all v. all BLAST run using the [file]_Con_protein.fa dataset.
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Al No ATHNo CCLNo CRENo MTRNo OSANo PPANo PTRNo ST No STUNo THANo ZMA No

This heat map represents the all v. all BLAST run using the [file]_Non_protein.fa dataset.
LINE PLOTS:

The title of each line plot reads “All v. All BLAST: [file]” where [file] is the name of the file being compared
from each dataset. The file “ALL” is not was not found in the original dataset—it is a concatenation of the
unique sequences from each of the other files in the dataset. The blue line represents the
[file]_Con_protein.fa dataset, the green line represents the [file] Non_protein.fa dataset, and the red line
represents the [file]_AllHits_protein.fa dataset. These are abbreviated in the tables below the graph as
“CON,” “NON,” and “ALL.” Also in the tables below the graph are the actual percentage values (shown as a
decimal) for the overlap between the files. The y-axis (labeled with each dataset’s abbreviation)
represents the query file given in the title and the top x-axis shows each of the subject files. Each row is
from a separate dataset, as labeled. The graph itself has an x-axis labeled with the files and a y-axis that
represents percent as a decimal (0%-120%).
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3D VISUALIZATIONS:

The 3D visualizations below have been created for each of the three datasets. The Query Files axis shows
the files where the query sequences were taken from, and the Subject Files axis shows the files that
contained hits from the query files’ sequences. The heat map at the bottom of the graph shows the
percentage overlap (much like the heat maps in the beginning of this document) where the dark red
areas have very high percentages and the dark blue areas have very low percentages. Lighter shades of
red and blue denote the percentages in between. The purple mesh in the middle shows a 3D
representation of this heat map. The peaks represent high percentages and the valleys represent low
ones. The percentage scale is on the vertical z-axis. The line graph projected opposite of the Query Files
axis renders the peaks and valleys of the mesh in 2D. The line graph projected opposite of the Subject
Files does the same thing, but from the opposite perspective. The peaks represent high percentages (and

valleys for low ones) in the line graphs as well.
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This 3D image is a rendering of data from the all v. all BLAST run using the [file]_All_protein.fa dataset.
The All_Al file was not found in the original dataset—it is a concatenation of the unique sequences from

each of the other files in the dataset.
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Percentage

This 3D image is a rendering of data from the all v. all BLAST run using the [file]_Con_protein.fa dataset.
The All_Co file was not found in the original dataset—it is a concatenation of the unique sequences from

each of the other files in the dataset.
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This 3D image is a rendering of data from the all v. all BLAST run using the [file]_ Non_protein.fa dataset.
The All_No file was not found in the original dataset—it is a concatenation of the unique sequences from

each of the other files in the dataset.



