JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

Runtime Systems and Out-of-Core Cholesky
Factorization on the Intel Xeon Phi System

ALLAN RicHMOND R. MoORALES, CHONG TiaAN, Kwal WoNG, EDUARDO D’ AZEVEDO

The George Washington University, The Chinese University of Hong Kong,

University of Tennessee, Oak Ridge National Laboratory

Abstract

We will explore how different runtime systems can be implemented on the Intel Xeon Phi System in
Beacon. First, we will explore how to utilize PLASMA for handling dense linear algebra computations
and QUARK for task management and added parallelism to fiqure out the dependencies between the tasks
and the scheduler. These algorithms will then be tested on the Beacon’s MIC for performance analysis and
comparison with the Intel MKL implementation. The end goal is to have an optimized runtime system
that incorporates QUARK threading and management with the MKL BLAS routines. Another goal is to
implement a hybrid Out-of-Core algorithm for Cholesky factorization that can be used in conjunction with
the PLASMA/QUARK implementation to see if its performance is efficient and scalable.

I. BACKGROUND

Beacon is a supercomputer at the Oak Ridge
National Laboratory (ORNL) that has 48 com-
pute nodes. Each node consists of the follow-
ing: two 8-core 2.6 GHz Intel Xeon E5-2670 Pro-
cessors with 256 GB RAM and four 1.053 GHz
60-core Intel Xeon Phi 5110P Coprocessors with
8 GB RAM, which has a Many Integrated Core
(MIC) architecture. Each has its own tradeoffs,
but the former has 8x more memory and the
latter has more computational power since it
has more cores than the processors. All these
coprocessors are connected to an Intel Xeon
processor (the host) via a PCI bus.

Within Beacon, there are different modes
of execution for Beacon. Host mode is the
standard execution through the host proces-
sor. Native mode utilizes the coprocessor as
an independent compute node and runs the
execution only on the MIC card. Any libraries
used must be recompiled for native mode with
the compiler flag "-mmic". To achieve paral-
lelism across cores, threads will be used. And
in offload mode, code will run on the host. If
there are specified sections of code for paral-
lelism, pragmas and directives can be used to
offload into the MIC.

The Intel Xeon Phi system support a num-
ber of runtime systems written in C, C++, and
Fortran. A runtime system is an integral part
for program execution since every program-
ming language has some form of this system.
Therefore, one purpose of this research is to fo-
cus on a compiled language (C) as well as ap-
plication programming interface (API) calls to
QUARK, PLASMA, and the Intel MKL libraries
to provide performance analysis on Beacon.

To test the performance of these runtime
systems, some routine must be implemented
that can generate a large number of floating op-
erations per second (GFLOPS/sec). Therefore,
matrix manipulation using dense linear algebra
algorithms is ideal since matrices are efficient
in calculating and storing data. Some routines
that will tested include nested matrix multipli-
cation, DGEMM, and Cholesky Factorization.
Intel’s MKL library has been optimized on the
Xeon Phi System; therefore, the data collected
will be used as the benchmark for comparison
with the other tested runtime systems.

Another purpose of this research is to ex-
plore an Out-of-Core (OOC) algorithm for
Cholesky Factorization using QUARK, which
will later be discussed in the report. From a
hardware perspective, this is an optimized al-

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

gorithm that will take full advantage of the
Intel Xeon architecture. With more memory in
the processor, larger matrices can be supported.
Then breaking the matrices into sub-matrices
(tiles), they can be offloaded into the MIC,
which will have more computational power.

II. T CHOLESKY FACTORIZATION

Cholesky factorization is the decomposition of
a positve-definite matrix into the product of a
lower triangular matrix and its conjugate trans-
pose, as shown in Figure 1. This dense linear
algebra algorithm can be broken down into the
following steps:

A A Ly;

Az Az

Figure 1: Visual Representation of Steps

Step 1: L11 <— cholesky(A11)

Step 2: L21 <- A21 / L1V’
<Panel Factorization>

Step 3: A22 <— A22 — (L21 * L21")
<Trailing Sub-matrix Update>

Step 4: L22 <— cholesky(A22)

Solving linear system Ax=b is vital is scien-
tific computing. When A is symmetric positive
definite, Cholesky factorization can be applied
in which A = L* L, where is L is a lower tri-
angular matrix. Then using forward and back-
ward substitution on L * L’ * x = b can make
it easier to solve Ax=b. For a large-scale ma-
trix, implementing Cholesky factorization will
operate on many sub-matrix blocks of "A".

- panelfactonzation
- trailing submatriz update
» ey
[| |
.. - dpotrf [dtrsm '
1] | dsyrk dgemm)|
Figure 2: Tile Representations of

Cholesky steps

The utility of blocking promotes data local-
ity and reuse in the faster and smaller levels
of the memory hierarchy. However, the panel
factorization step consists of matrix-vector op-
erations (level 2 BLAS operations), which can-
not be parallelized efficiently in shared mem-
ory machines. The trailing matrix update op-
erations (matrix-matrix operations or level 3
BLAS operations),which are highly paralleliz-
able, must wait for completion of the panel
factorization. Thus, the behavior of Cholesky
factorization can be described as a sequence
of serial operations followed by parallel ones
periodically. This results in a fork-join style
execution,where scalability is limited. There-
fore, to gain more parallelism, we choose to
perform tile operations on the large-scale ma-
trix, which breaks the panel factorization and
trailing sub-matrix update steps into smaller
tasks.Then these tasks can be scheduled dy-
namically by the runtime system. In such an
asynchronous execution, sequential tasks can
be hidden behind parallel ones.

From this abstraction, the following pseu-
docode conveys the behavior of such blocking:

for k=0...n-1

for j=k..n-1
for [=j...n-1 {
i li=i&&j=k] dpotef [ALD™2T)
I li=iB&j=k) dirsm (A(REY™, AQLD™OUT)

Eli=i&lj=k] deyri (AllE)"™, AlLD™T)
fli=i8&j=k] dgemm (ALK ALK ALY
1

To perform this tiled routine, the following
four BLAS subroutines are required:

o dpotrf - Cholesky factorization

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

e dtrsm - triangular solve:
Solve op(A)*X = alpha*B, or X*op(A)
= alpha*B

o dsyrk - symmetric rank k operations:
C = alpha*A*A’ + beta*C

e dgemm - general matrix-matrix opera-
tions: C = alpha*op(A) * op(B) + beta*C

Given the logic of this pseudocode, the next
approach is using the appropriate runtime sys-
tem to begin implementing the tile Cholesky
factorization. For this research, the goal is us-
ing QUARK and the following snippet of code
utilizes the QUARK API to configure DGEMM:

void CORE_dgemm_quark(Quark *quark); //body omitted
void QUARK CORE dgemm(Quark *quark, Quark_Task_Flags *task flags, PLASMA_enum transA,

PLASMA_enum transB,int m, int n, int k, int nb,double alpha, const double *A, int Ida,const double
*B, int [db,double beta, double *C, int Idc); //body omitted

kI&&(41) //dgemm type:(ilwhereik

{
Quark_Task Flags _ tflags=Quark_Task Flags_Initializer; //initailize the task
QUARK_Task Flag Set(&tflags,TASK_PRIORITY,1);//set the task attributes like priority

QUARK_CORE_dgemm(quark, &tflags,CblasNoTrans,CblasTrans, NB,NB,NB,NB,-1.0,&A2(0,0,i, k) NB,&
AZ2(0,0,j,k),NB,1.0,&A2(0,0,i),NB); // pass the arguments ,where data dependencies are implied

continue; }

III. Task DIReECTED AcycLiCc GRAPH

The next step is creating a directed acyclic
graph (DAG), a visual representation using
Graphviz in which a node can represent an
operation on a matrix tile and an edge can
represent the data dependency.

Figure 3: 4x4 Cholesky Factorization Case

Once the DAG is produced and fed into
the runtime system QUARK, tasks should be
scheduled asynchronously and independently
as long as the dependencies are not violated.
In the DAG, a critical path can be identified by
connecting nodes having more outgoing edges.
And the tasks on the critical path are the most
important. Once it is done, it will free up more
available parallel work. Within the program-
ming, DPOTREF can be assigned higher priority
within the QUARK runtime system.

To generate the structure in Figure 3, the
following code configures the node and color
assignment:

struct Label{long L;long J;long K;};
struct List{long node;label Node;char type;label in[3];label out[n-1];};

if((i>k)&&({i>])) //dgemm type:(i k), wherei>j>k
{

list[count].Node=assignlabel(i,jk); listfcount].node=(i+1+j*n}+k*n*n; list[count].type="M";
fprintf(fp,"%ld[label=\"{%Id,%Id,%Id) | GEMM\",color=forestgreen];\n" list[count].node,i,j,k);

//assign node gtrributes like label.color and so on

for(q=0;q<3;q++)//Traverse the in-nodes and specify the data dependencies by edges
{
if (A{list[

Lin[q].1==-1)| | {list[lin[q).0==-1)| | {list[count].in[q].K==-1))}

fprintf(fp,"%Id->%ld;" (list[count].in[q].I+1+list[count].in[g].J*n+list[count].in[g].K*n*n),

list[count].node);

}

fprintf(fp,"{rank=same;depth%Id %Id}\n",{3*k+3) list[count].node); //mark the depth

IV. Out-0r-CorE (OOC) ALGORITHM

Given the standard Cholesky factorization, the
OOC algorithm is a hybrid method to per-
form Cholesky factorization. It distributes the
left-looking part to CPU (out-of-core) and the
right-looking part to GPU/MIC (in-core). The
OOC algorithm has only been considered in
recent times because more research has discov-
ered that coprocessors such as the GPU and
MIC are much faster and energy efficient when
performing high-level computations such as
matrix-matrix multiplication.

However, there are some tradeoffs. First,
they have relatively small device memory,
which restricts the problem size. To fix this
problem, the idea of OOC algorithm is to bring
in small pieces of matrix and perform most of
the heavy computation loads on the coproces-
sor and then write the data back. So it takes

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

advantage of the computational efficiency of
hardware accelerators without limiting the size
of the matrix problem. Second, the data move-
ment between CPU and coprocessor is expen-
sive, which means we need to optimize the
amount of data we bring into the device each
time.

Coprocessor
Coprocessor

Figure 4: OOC Structure of a 8 x 8 example
(left: out-of-core; right: in-core)

The structure of this hybrid algorithm can
be broken down into the out-of-core and in-core
part, as shown in Figure 4. For the out-of-core
part, the load part of the matrix is sent to the
device memory(Y panel) while the update
is applied from the part already factorized.
Second, the in-core part will factorize the sub-
matrix residing on device memory. As a result,
combining the OOC algorithm and general
Cholesky factorization can yield a theoretical
DAG like Figure 5.

/<
/

-

TR [.‘ i

aloiues]

Figure 5: OOC DAG

For a Dbetter abstraction, the pseu-
docode can be stated as the following:

/*0ut of core part:(starting from the Afkk) tile)*/
/*01.5end in Y-panel*/
for j=k:1:k+size¥-1
fori=j:1:n
H2D_Copy Ali,j) -> Y{i,j) /*Expected optimization 1 */
/*02.Left looking update,if not the first Y-panel*/
/*Send factorized columns into X panel*/
fori=1:1:k-1
{
for j=k:1:n
H2D_Copy L{i,j)->X(j)
/*Expected optimization 2*/
for g=k: 1:k+size¥-1
for p=g:1:n
if(p==a) dsyrk(Y{p.g).X(p))
else dgemm(Y(p,a), X(p], X(q)")}
/*Expected optimization 3%/
/*in core part :basically similar to the general Cholesky
factorization.except there are extra data movements,
especially from ¥ panel to X panel or to CPU*/
S*Expected optimization 4 */

V. ExPECTED OPTIMIZATION ANALYSIS

Expected optimization 1 - Squeeze more data into Y:
Note that right bottom of the lower part of A shrinks
in each new iteration(the purple part in Figure 5 left).
For the same amount of space dedicated to the Y
panel,which is usually N*isize Y, we may send more
tile columns into device each time.This requires a
much more complicated correspondence between A
and Y than simply copying A(i,j) to Y(i,;).

Expected optimization 2 - Fast copy form Y to X:

On device memory, copying one array to another is
fast. For the last tile column on Y panel, it can be
directly copied to X instead of writing it back first.
Expected optimization 3 - Double buffering:

Use two X panels for update steps:while one panel
is doing DGEMM(),the other can be reading data
concurrently.If the time needed for DGEMM opera-
tions is very close to the time needed for transferring
data, the benefit can be substantial because the total
time is reduced to about the half.

Expected optimization 4 - Perform DPOTRF() on CPU:
When doing irregular computations like small scale
Cholesky factorization, the single core on MIC is
slower than the CPU. So it is wiser to let CPU per-
form the DPOTREF() but perform most of the regular
large scale matrix-matrix operations on the device.

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

VI. Future GoaLrs FOrR OOC
IMPLEMENTATION

As of now, the process of combining the OOC
and the general Cholesky factorization to be
used with QUARK is incomplete. Neverthe-
less, there is enough fundamental data and
abstractions for this process to be finished in
the near future. Another future goal would
be extending the current single MPI process
code to multiple MPI processes version. And
once this OOC algorithm has been successfully
tested for correctness and optimization in its
execution, these principles and methodologies
can be applied to other dense linear algebra
algorithms such as LU factorization with piv-
oting and QR factorization.

VII. OVERVIEW OF RUNTIME SYSTEMS

Besides QUARK implementation of Cholesky
on the Intel Xeon Phi System, another area
to explore is how well other runtime systems
perform on the Intel Xeon Phi system. By mea-
suring the GFLOPS/second of various matrix-
multiplication routines, the performance of
programming environments such as QUARK,
PLASMA, and the Intel MKL library can be
tested and compared.

QUARK stands for QUeuing And Runtime
for Kernels. QUARK provides a number of
libraries with sets of instructions to enable dy-
namic execution of tasks with data dependen-
cies in a multi-core and multi-socket shared-
memory environment to attain a high utiliza-
tion of available resources. QUARK is scalable
for large numbers of cores, which is ideal for
high performance computing. The goal with
using QUARK is to coordinate a sequence of
tasks that are submitted to a set of resources,
i.e. the MIC cards. This task can be a BLAS or
MKL routine. Next, the tasks will be assigned
to a QUARK worker thread, which will send
it to a MIC and then wait for the completion
of the tasks. After a task is completed, the
QUARK worker thread will pick up the next
available task to send to its MIC. These tasks
could be a BLAS/MKL routine.

PLASMA stands for Parallel Linear Algebra
for Scalable Multicore Architectures. PLASMA
provides a scalable and efficient environment
for dense linear algebra applications and high
performance computing. Within its libraries
are a number of function calls such as Cholesky
(potrf) and matrix multiplication (gemm) that
have defined algorithms to manipulate matri-
ces. The latest version (2.6.0) has been installed
as a module onto Beacon. With QUARK, a
number of PLASMA-defined linear algebra
function calls will be wrapped and then im-
plemented directly on the Beacon MIC cards.

And the Intel Math Kernel Library (MKL)
includes functionalities from BLAS, LAPACK,
SacLAPACK, and other dense linear algebra
algorithms. Because these MKL functions have
been optimized for the Intel architecture, they
can serve as benchmarks for normal and opti-
mized test cases.

VIII. BREAKDOWN OF PERFORMANCE

TESTING

The following routines were tested in their
respective programming environment:

e QUARK Multi-threaded Tiled Matrix
Multiplication

e PLASMA Tiled DGEMM

e Intel MKL DGEMM

o Intel MKL SPOTRF (Cholesky Factoriza-
tion)

For matrix multiplication and DGEMM, the
equation in Figure 6 will be used. For Cholesky
factorization, the equation in Figure 7 will be
used.

2n? 1s

9 5 R R
107 = time_avg 107 = time_avg

Figures 6 + 7: Respective GFLOPS/second Equations

n_n

For 'n", an assumption is made that matri-
ces A, B, and C are symmetric, ie. n=m =
k. And using the average time provides more
accuracy by running multiple iterations of the
routine, summing their execution times, and
then divide by the number of iterations.

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

IX. REesuLrts

First, QUARK was implemented to test a multi-
threaded tiled routine for matrix multiplication
on the host and the MIC. The matrix was di-
vided into tiles and the calculations were done
in parallel based on the number of available
QUARK threads.

Performance Test for QUARK Tiled Matrix Multiplication (HOST)

232560007 5395652007

5223276839

(=100
@Ng-250

NB=500

GFLOPS/second

(=100

athreads 8 threads 16 threads 32 threads 64 threads
Number of QUARK threads

Performance Test for QUARK Tiled Matrix Multiplication (MIC)
11,3790614

GFLOPS/second

215796714
1.38587357

4threads 8 threads 16 threads 32 threads 64 threads
Number of QUARK threads

Figures 8 + 9: QUARK Performance Test
for Host and MIC

NB=100 NB=250 NB=500 NB=1000

4threads 13.46281933 12.5576024 12.173018 9.01319071

8threads 26.77594129 24.3421548 23.656976 14.8945193|

16 threads 52.32566097 47.4777321 45.76333371 23.1449664

32 threads 53.95652097 50.2472455 32.62076229 22.262155|

64 threads 52.23276839 49.5421097 20.25220514 13.0737957|

NB=100 NB=250 NB=500 NB=1000

4 threads 0.99663077 1.38587357 1.496806 1.63284111

8threads 1.702728462.157967142.21691933 2.22034778|

16 threads 3.032453083.69681071 3.5375323.36262222

32 threads 5.5189 6.4818055.77946333 4.94149778

64 threads 9.9687476911.3790614 9.487648 6.68409111]

Tables 1 + 2: Numerical Data from
QUARK Performance Tests

The range for the matrix size was tested
between 500 and 15000. The data collected
proved to be relatively constant throughout all

matrix sizes; therefore, these values were aver-
aged and the performance graph was based on
the number of QUARK threads.

First, the data collected from the host
demonstrates that using a smaller number of
threads can yield a better performance output.
Though 32 threads is favored at smaller tile
sizes, the difference in performance between
16 and 32 threads is small; thus, it can be
concluded that optimal performance when in-
creasing the tile sizes can be attained using 16
threads. Using too many threads will reduce
the performance output due to more block-
ing and overhead. Another important point
is the inverse relationship between the perfor-
mance and tile sizes. Given 16 threads, the best
output of approximately 54 GFLOPS/second
is collected from the smallest tile size of 100.
However, as the tile size increases, the perfor-
mance decreases. And this trend exists over all
trials of different number of QUARK threads.

As for the data collected on the MIC, a dif-
ferent trend exists. Optimal performance is
achieved across different tile sizes using the
maximum number of QUARK threads defined,
and these performance readings are signifi-
cantly decreased compared to those on the host
with the maximum output being five times less
than that on the host.

One final observation is this QUARK Tiled
Matrix Multiplication routine is not optimized
for either the Intel Xeon processor as well as
the MIC architecture as the maximum per-
formance output is only a small percentage
to the peak performance expected (approxi-
mately 1011 GFLOPS/second); nevertheless,
preliminary tests provided by the University of
Tennessee’s Starl cluster only yielded approxi-
mately 1 GFLOPS/second, given significantly
less computational power and memory. There-
fore, one approach for improvement can be
utilizing the offload functionality to take ad-
vantage of the host’s memory and the MIC’s
computational power. Another approach worth
testing is taking advantage of the hyper thread-
ing given that Beacon supports 4 MIC per com-
pute node, each having 60 cores and thus pro-
viding a total of 240 threads.

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

Given that the nested-for loop matrix mul-
tiplication approach, the next step is finding a
more optimized approach. And according to
Intel, the typical benchmark for performance
testing is with the DGEMM routine. Therefore,
PLASMA is first tested since it has already
been installed as a module in the Intel MIC ar-
chitecture. For comparison purposes, another
PLASMA programming environment was in-
stalled on the host processor.

Performance Test for PLASMA DGEMM TILE
NB = 128, 60 Threads

g

e ——
[

SN

—HoST

GFLOPS/second
& 8 8

—ic

oy

500
000 | 4
500
000
500

3000

3500

4000

500

5000
500

6000

6500

7000

7500

8000

8500

5000

9500

0000

0500

1

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Matrix Size (NxN)
Figure 10: PLASMA Tiled DGEMM Performance Test

First, running the default PLASMA test
given a tile size of 128 and 60 threads will
provide a benchmark for performance on the
MIC and on the host. From this data, it can
be concluded that the MIC performs more
than 4x better than on the host (138.14 and
32.32 GFLOPS/second respectively). Given
this benchmark, the next approach is testing
what factors can be changed in order to gain
more performance output. One consideration
was testing the impact of increased number
of threads; however, the data proved to be in-
significant as the performance readings on both
the host and MIC did not change significantly;
especially on larger matrix size, the output
yields a similar threshold. Therefore, the other
option was changing the tile sizes, and this
data proves to provide some insight.

PLASMA DGEMM Tiled Routine:
Various Tile Sizes

S——NE100 MIC

s—NB250 MIC

NBS00 MIC

w—NB100 HOST

w—NB250 HOST

s—=NB500 HOST

PFPFFPEPEP DS RP D
P EF A F F F T g T S

ARV R TN

Matrix Size (NxN)

11: PLASMA Tiled DGEMM Test

with Different Tile Sizes

Figure

On the host, changing the tile size (NB) on
the host proves to be insignificant. Though
it is important to note that the performance
slightly decreases. However, the opposite trend
exists on the MIC. Changing the tile size to
the max defined does provide the most per-
formance boost. From a numerical stand-
point, the MIC implementation is more than
eight times faster than the Host implementa-
tion (279.89 and 32.88 GFLOPS/second respec-
tively). With this approach, this implementa-
tion of DGEMM was able to reach 30 percent of
the Intel MIC’s theoretical peak performance
(1011 GFLOPS/second).

Given this experimental data, it can be
compared with the Intel MKL benchmark re-
sults for DGEMM. Because this routine has
been optimized for the Intel architecture, it has
been advertised that DGEMM can reach up to
833 GFLOPS/second and greater. This perfor-
mance test was recreated. Before doing so, a
generic performance test based on the modes
of execution was performed.

Performance Tests for Different Modes of Execution
for the Intel MKL DGEMM routine

GFLOPS/second
|

Matrix Size (NxN)

Figure 12: Intel MKL DGEMM Performance Test:
Modes of Execution

According to these results, the MIC yields
the greatest performance output overall, which
is expected since the MIC provides more
computational power. And the host only
reaches a threshold of approximately 300
GFLOPS/second. The data that proves ques-
tionable is the Offload execution, which barely
peaks past approximately 250 GFLOPS/second,
because this mode should take advantage of
both the host and MIC architecture. Therefore,
a theoretical plot for Offloading should yield
a performance output greater than that from
the host processor. Nevertheless, these results
convey that the MIC can performance values
even greater than 833 GFLOPS/second.

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

Given this data, the next approach is reach-
ing this proposed performance output, which
states that at a matrix size of 7680, the out-
put can reach 833 GFLOPS/second. Before
running these tests, certain MIC environment
variables need to be configured. The first
variable is OMP NUM THREADS, which is
based on the hyper-threading incorporated
within the MIC architecture. Each MIC has
60 cores; and since Beacon has four per node,
the maximum number of threads available is
240. The second variable is KMP AFFINITY,
which is the scheduling and organization of
the hyper-threads. There are three different
assignments: compact, balanced, and scatter.

Aliocation with the compact affinity type

Pkg0

[Core0 I ‘ Core 1 ‘ ‘ Core2 ‘
o] 1 2 3 4 5

Allocation with baLlanced affinity type

Pkg 0

Core 0 | Core 1 [‘ Core2 l
wa]] o] (] (e) [(][])
2 3 4 5

Figure 13: KMP AFFINITY variables

Setting KMP AFFINITY to "compact" al-
lows for sequential queueing as shown in Fig-
ure 13 in which an example is given with three
cores and 6 threads allocated. Setting KMP
AFFINITY to "balanced" allows for threads to
be allocated evenly among the cores as shown
in Figure 13. With this setting, cache utilization
is enabled so that there is much less overhead
for memory transfer. And setting the KMP
AFFINITY to "scatter" allows for threads to
be allocated in an arbitrary manner. Setting
these MIC environment variables are crucial in
order to achieve any speedup. Hence, the first
performance test involved changing the values
for the OMP NUM THREADS variable.

Performance Tests for Threading within MIC:
Intel MKL DGEMM routine

Q

_ ——

GFLOPS/second

Matrix Size (NxN)

Advertised Intel MKL DGEMM

Performance Test

Figure 14:

From this data, it can be concluded that
using the maximum value available on a sin-
gle compute node (240 threads) will yield
the best output; and when the matrix size
is 7680, the performance output reaches a
value very similar to the advertised value (833
GFLOPS/second). Therefore, the next step
is modifying the distribution of the hyper-
threads to confirm if the same results can be
attained.

Performance Test for MIC environment variables:
Intel MKL DGEMM routine (N = 7680)

}

/ﬁ\\/ "

\ "
f -
,

& e 75 % 05 w0 35 1% 18 1m0 185 20

£ 8 g

GFLOPS/second
¥ : .

8

Number of Threads
Figure 15: Intel MKL DGEMM MIC Environment
Variable Performance Test

In Figure 15, the test focused on the matrix
size of 7680, and the steps were determined
based on the number of threads in order to
create plots that reflect the value of the KMP
AFFINITY variable. As a result, it can be con-
cluded that this variable must be configured in
order to reach this optimal performance out-
put. With no specifications, the performance
can reach up to 550 GFLOPS / second, but
the overall performance reaches only half the
expected optimal performance output. Once
the KMP AFFINITY variable was set to "com-
pact” or "balanced", the expected output was
achieved, though their plot lines differ. For the
former, the plot is linear and conveys a direct
relationship between the number of threads
and the performance output. For the latter,
the performance plot resembles that from the

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

plot with no specifications; however, it yielded
greater values at smaller threads that that from
the the "compact". Therefore, in order to fully
utilize the MIC architecture to get this adver-
tised value of roughly 833 GFLOPS / second,
the environment variables must be set so that
OMP NUM THREADS=240 and KMP AFFIN-
ITY=balanced.

Understanding how to test the Intel MKL
routines, the same testing environment will
be applied to test Cholesky factorization in or-
der to provide a benchmark for future testing,
specifically for the QUARK implementation
and the Out-of-Core algorithm to optimize
this routine. For this test, the single precision
routine for Cholesky factorization (SPOTRF)
was tested. The first performance test will
compare the available modes of execution.

Performance Tests for Cholesky Factorization:
Intel MKL Routine (spotrf)

700 —

§so0 e .
zm—ﬁé_F-i,i ost

m: y *,_,"-_'
BERERERE58588¢

rix Size (NxN)

4500
7500
8000
8500
9000
9500
0000
500
000
500
000
500

gda3dsd

Figure 16: Cholesky Factorization (SPOTREF)

Performance Test

Given these results, the MIC architecture
proves to provide the most performance out-
put at approximately 745 GFLOPS/second. For
the host execution, it reaches a threshold of
approximately 500 GFLOPS/ second once the
matrix size reaches 6000 and more. For the
offload execution, the data reaches a maximum
output of 300 GFLOPS /sec but the overall plot
proves to be questionable. This flaws plot may
result from incorrectly timing the offloading or
an incorrect implementation of the offloading
routine. Nevertheless, it is important to note
that the MIC only reaches greater performance
output values when the plot reaches certain
intervals of 9000 and 10,000 and 11500 onward.
Therefore, it can be concluded that at smaller
matrix sizes up to 8000, the host implementa-
tion performs better. At larger matrix sizes past
8000, the MIC implementation performs bet-
ter. Nevertheless, because the MIC can reach a

=3
g ™ 3 —OFFLOAD
200
MIC

higher maximum performance output than the
host, the next approach is testing how modify-
ing the MIC environment variables can affect
the performance output.

Performance Tests for Cholesky Factorization:

MIC Environment Variables and Threading
Intel MKL Routine (spotrf)

g

‘GFLOPS/second
- BB EE
g8

Figure 17: Cholesky Factorization (SPOTREF)
Performance Test: Comparison of Different
MIC configurations

For this graph, the plots are based on
the number of hyper threads and chang-
ing the organization of the cores. Given
this data, the ideal configurations to get
the optimal performance output of approx-
imately 745 GFLOPS/second is setting the
OMP NUM THREADS=240 and KMP AFFIN-
ITY=compact. The second best setting proved
to be OMP NUM THREADS=240 and KMP
AFFINITY=balanced. These two plots are very
similar and overlap up to a matrix size of
9000. When the matrix size is increased past
this value, there are fluctuations that cause
the balanced setting to decrease in its perfor-
mance. These fluctuations may be caused by
overhead from checking all 240 cores that may
not be completely occupied rather than check-
ing through fewer cores that will be completely
occupied. Nevertheless, these results convey
that the all the available resources within the
MIC are being utilized in order to get the best
performance output.

X. FuTureE GOALS FOR THE RUNTIME
SYSTEM

A number of performance tests can have been
conducted based on certain matrix manipu-
lation routines on the MIC and host; but for
this particular research, there are a number of
goals that were not accomplished but can be
explored in the future. Having more QUARK

JICS CSURE REU 2014 Final Report @ Emergent Systems o August 2014

and PLASMA performance tests would pro-
vide more stable data for comparison, specif-
ically QUARK DGEMM as well as PLASMA
DPOTRF, DTRSM, and DSYRK. A greater ex-
ploration of the offloading mode would help
verify if it is an efficient mode of execution
across a number of routines. And as for
the end goal, we were unable to incorporate
the OOC algorithm for Cholesky Factoriza-
tion with QUARK to implement within Bea-
con. However, we do hope that our prelimi-
nary research can provide future interns and
researchers a foundation to explore more pos-
sibilities of optimizing runtime systems with
the Intel Xeon Phi System.

XI. THINKING ABOUT THE FUTURE:
DOCUMENTATION

One of the major obstacles in this research is
the lack of documentation for inexperienced
researchers and interns. As a result, a sub-
stantial amount of time was spent setting up
these programming environments rather than
coding and testing routines. Therefore, I have
provided some documentation that will pro-
vide newcomers with all pertinent information
about execution with Beacon, PBS implemen-
tation, how to set up a particular environment
for Host or MIC performance testing, sample
code, and the current progress of the research.
In providing this documentation, it will allow
the users to quickly configure their program-
ming environment and begin testing code at a
faster pace.

XII. ACKNOWLEDGEMENTS

This research was conducted during the sum-
mer research program known as the Comput-
ing Science for Undergraduate Research Expe-
riences (CSURE) in Knoxville, Tennessee. This
summer program is run by the National Insti-
tute of Computational Science (NICS), which

10

is located at the Oak Ridge National Labora-
tory. We would like to extend our gratitude to
our mentors Dr. Eduardo D’Azevedo (ORNL)
and Dr. Kwai Wong (UT). Throughout the du-
ration of the program, we have also received
assistance from a number of collaborators in-
cluding Dr. Asim YarKhan (UT), Dr. Shiquan
Su (NICS), Ben Chan, and the XSEDE Trou-
bleshooting Support Service.

XIII. REFERENCES

1. Beacon User Guide.
https:/fwww.nics.tennessee.edu/beacon

2. Betro, Vincent.
Beacon Quickstart Guide at AACE/NICS.

3. Betro, Vincent. Beacon Training: Using the
Intel Many Integrated Core (MIC) Architec-
ture: Native Mode and Intel MPI. March
2013

4. Dongarra, Jack, et al. PLASMA Users’
Guide Version 2.3. Sept. 2010

5. Hebenstreit, Michael. Faces of Parallelism:
Porting Programs to the Intel Many Inte-
grates Core Architecture.

6. Hulgain, Ryan. Intro to Beacon and Intel
Xeon Phi Coprocessors.

7. Kurzak,Jakub. PLASMA/QUARK and
DPLASMA/PaRSEC tutorial: ICL UT In-
novative Computing Laboratory.

8. Oertel, Klaus-Dieter. ScicomP 2013 Tuto-
rial: Intel Xeon Phi Product Famiy Program-
ming Model

9. Wong, Kwai. Parallel Computing: An Ove-
view, Supercomputers, MPI, OpenMP, and
More...

10. YarKhan, Asim, Jakub Kurzak, and Jack
Dongarra. QUARK Users” Guide. April
2011

	Background
	Tile Cholesky Factorization
	Task Directed Acyclic Graph
	Out-of-Core (OOC) Algorithm
	Expected Optimization Analysis
	Future Goals for OOC Implementation
	Overview of Runtime Systems
	Breakdown of Performance Testing
	Results
	Future Goals for the Runtime System
	Thinking about the Future: Documentation
	Acknowledgements
	References

