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Overview

• Utilize a set of programs to simulate the blood flow in arteries 

• Evaluates the stability of implemented solvers to handle fluid 

structure interaction problems 

• Use continuous Galerkin finite element method and will 

extend to discontinuous Galerkin finite element method 

• Utilize DIEL to solve weak coupling equations



Fluid-Structure Interactions
• Blood flow causes deformation of the vessel wall and 

deformation of the wall changes the boundary conditions of 

blood flow. 

• Two components 

– Fluid (blood) modeled by Navier-Stokes equations 

– Solid structure (vessel wall) modeled by partial differential 

equations of 1D, 2D and 3D, giving radial and longitudinal 

deformation of wall from its resting state 

• Develop a coupling strategy to solve fluid-structure equations
3



Fluid Structure Interaction Equations
Fluid Equations(INS)

Boundary Interactions

Computational vascular fluid dynamics: problems, models and methods 193

Fig. 35. Vector field for a 2D simple anastomosis morphology; different instants of the heart beat: peak flow (top, left) and initial deceleration phase (top
right), middle deceleration (bottom left) and end of deceleration (bottom, right) phases

Fig. 36. Three-dimensional anastomosis reconstructed by a glass model. See
[39]
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Fig. 37. Shear stress computed in the anastomosis of Fig. 36. The red ar-
rows show the low shear stress zones

Structure Equations

A combined 2D fictitious domain/adaptive meshing method 15

This method was first applied in a two dimensional fluid-leaflet interaction model
by De Hart et al. [2000]. An extension to 3D was published recently [De Hart et al.,
2003b,a]. In these models the compliant solid walls are described using an ALE
method while an FD method is used for the leaflets.

However in general, FD methods require an interpolation to the immersed
boundary. As a result these methods do not allow for highly accurate descriptions of
gradients in velocity field and pressure discontinuities across the immersed boundaries.
Hence, in heart valves, where shear and substantial diastolic pressure gradients along
the leaflets play an important role in their functioning, the application of FD solely
to describe the interaction may not be sufficient.

The goal of this chapter is to develop a method that is able to accurately capture
stresses along the leaflet boundary. Furthermore, physiological pressure gradients
across a leaflet should be computed correctly. The presented method is an extension
of the FD method [De Hart et al., 2000; Baaijens, 2001], with an inexpensive adaptive
meshing technique. By creating an inner fluid curve, that coincides with the solid
boundary, only interpolation along (and not across) the boundary is needed, resulting
in more accurate solutions. Typical model problems are presented to show the
method’s ability of describing transvalvular shear stress and pressure discontinuities.

2.2 Methods

2.2.1 Governing equations

Throughout the whole chapter fluid-structure problems are considered in which the
fluid is described by the Navier-Stokes equation and the continuity equation,

ρ

(
duf

dt
+ uf · ∇uf

)
= ∇ · τ f − ∇pf , (2.1)

∇ · uf = 0, (2.2)

in which uf is the fluid velocity, ∇ the gradient operator, ρ the density and pf the
hydrostatic pressure in the fluid. The viscous part of the Cauchy stress tensor denoted
as τ f reads,

τ f = 2ηD, (2.3)

in which η represents the dynamic viscosity and tensor D the rate of deformation
tensor,

D =
1
2
(
∇uf + (∇uf )T

)
. (2.4)

An incompressible solid phase is considered, described by,

∇ · τ s − ∇ps = 0, (2.5)
det(F ) = 1, (2.6)

16 Chapter 2

in which ps is the hydrostatic pressure in the solid and F the gradient deformation
tensor ((∇0xs)T ) where xs is the solid position vector and ∇0 the gradient operator
with respect to the reference state. The extra stress tensor τ s is defined as,

τ s = G
(
F · F T − I

)
, (2.7)

where G is the shear modulus and I the unity tensor. Note that the superscripts f

and s will be used in this thesis to distinguish fluid and solid, respectively.

2.2.2 Coupling

The fluid-structure problems presented throughout this chapter consist of a fluid
domain (Ωf ) and an immersed solid domain (Ωs). These two domains are coupled
at the boundary (∂Ωs) of the solid domain by the constraint, uf − us = 0. This
constraint is applied weakly by introducing a distributed Lagrange multiplier (λ).
The weak forms for Eqs. (2.2), (2.6) and the constraint then become,
∫

Ωf

wf ·
(
ρ

(
duf

dt
+ uf · ∇uf

)
− ∇ · τ f + ∇p

)
dΩf +

∫

∂Ωs

wf · λ d∂Ωs = 0(2.8)

∫

Ωs

ws · (∇ · τ s − ∇p) dΩs −
∫

∂Ωs

ws · λ d∂Ωs = 0 (2.9)

∫

∂Ωs

wλ · (uf − us) d∂Ωs = 0 (2.10)

in which ws, wf and wλ are appropriate test functions. A same approach is used
by Glowinski et al. [1999a,b] and De Hart et al. [2000] in an FD approach. So far,
these methods are generally similar to the one proposed in this chapter. The way of
applying the Lagrange multiplier is, however, different. The linearisation of these sets
of equations can be found in Appendix A.

Consider a fluid domain, which is discretised into triangular elements, with a
boundary ∂Ωs crossing the elements (Fig. 2.1(a)). In the model problems, that
de Hart presented, the Lagrange multiplier is defined along the boundary, ∂Ωs, to
couple the velocity of this boundary to the velocity of the fluid elements in which
the boundary is situated [De Hart et al., 2000]. Although such an approach gives
satisfactory results for valve displacement and the general flow behaviour, it fails to
provide an accurate description of shear stresses at either side of the valve. Since
boundary ∂Ωs crosses the fluid elements, interpolation of the fluid velocity at this
boundary results in less accurate solutions. To improve accuracy, mesh refinement is
required, which can be expensive if it is not known a priori where the solid phase is
situated. Furthermore, during diastolic phase of the heart cycle the valves are closed
and due to a pressure decrease in the left ventricle, a large pressure gradient occurs
across the valve leaflets. Since the leaflets are crossing the fluid elements, erroneous
results for the pressures are obtained, which largely influences the velocities.

The model proposed in this chapter is based on the idea to create a boundary
∂Ωf inside the fluid domain that coincides with boundary ∂Ωs by performing an
adaptation of the mesh in the vicinity of ∂Ωs as explained next.

difficult and/or time-consuming to perform with suffi-
cient robustness and accuracy for three-dimensional
problems.

To resolve the limitations of these mesh update
strategies we use a fictitious domain method to describe
the interaction of the leaflets with the fluid. In this
method, the different mathematical descriptions for the
fluid and structure can be maintained, allowing con-
venient classical formulations for each of these sub-
systems. Moreover, the fluid mesh is not altered or
interrupted by the presence of the immersed domain,
and therefore preserves its original quality. Experimen-
tal validation of this method applied to a two-dimen-
sional aortic valve model is demonstrated by De Hart
et al. (2000). The application to a three-dimensional
isotropic valve with rigid aortic root (mimicking a
stented valve) and trileaflet symmetry is described in this
paper. The model is used to study the effect of fluid–
structure interaction on the valve behaviour for a
reduced Reynolds number flow. We intend to address
the importance of systolic functioning on the valve’s
(life-long) functionality. To this end, the influence of the
fluid-structure interaction on the valve kinematics is
investigated and the impact on the structural stress state
and the associated fluid dynamical flow is analysed.

2. Methods

The blood flow is considered to be isothermal and
incompressible. Assuming a Newtonian constitutive
behaviour (Caro et al., 1978), the flow within the domain
Of bounded by Gf can be described by the well-known
Navier–Stokes equation and continuity equation:

rf
q~vvf
qt

þ~vvf " ~rr~vvf

! "

¼ $~rrpf þ ~rr " 2ZfDf in Of ;

~rr "~vvf ¼ 0 in Of ;

ð1Þ

where rf denotes the density, t the time,~vvf is the velocity,
~rr the gradient operator with respect to the current
configuration, pf the pressure, Zf the dynamic viscosity
of the fluid and Df the rate-of-deformation tensor
defined as Df ¼ 1=2ð~rr~vvf þ ð~rr~vvf ÞTÞ: In this formulation
body forces are neglected. Clearly, the above set of
equations must be supplemented with appropriate
boundary conditions (see next section).

The aortic valve leaflets are assumed to behave linear
elastic and isotropic according to a Neo-Hookean
constitutive model. Hence, in absence of body forces
and with inertia terms neglected, the equation of motion
and the continuity equation for the incompressible
structural domain Os bounded by Gs read

~rr " ð$psI þ GðB $ IÞÞ ¼~00 in Os;

detðFÞ ¼ 1 in Os;
ð2Þ

where ps denotes the hydrostatic pressure, I the second-
order unit tensor, G the shear modulus and B the Finger
or left Cauchy–Green strain tensor. The deformation
tensor is defined as F ¼ ð~rr0~xxÞT; with ~rr0 the
gradient operator with respect to the initial configura-
tion and ~xx the field of material points. Also this set of
equations must be completed with suitable boundary
conditions.

For the structural domain an updated Lagrange
formulation is used to describe the deformation
throughout the time span of the analysis (Baaijens,
2001). In this formulation it is customary to take the
displacement field ~uu as the unknown. During a time
interval tn-tnþ1 this field is defined as

~uu ¼ ~xxnþ1 $ ~xxn; ð3Þ

where ~xxn and ~xxnþ1 denote the position of a material
point at time t ¼ tn and t ¼ tnþ1; respectively. In view of
the fluid–structure interaction the structural velocity
field is considered rather than the displacement field.
Hence, the velocity during time step Dt ¼ tnþ1 $ tn is
defined as

~vvs ¼
1

Dt
ð~xxnþ1 $ ~xxnÞ ¼

~uu
Dt

; ð4Þ

which represents a first-order approximation for the
structural velocity field.

Consider the domain Oi
s; with fluid–structure interface

boundary gi; to be the part of Os immersed in Of ; see
Fig. 1. Then fluid–structure coupling is realized by
enforcing the (no-slip) constraint

~vvf $~vvs ¼~00 on gi: ð5Þ

Physically Of and Oi
s cannot occupy the same domain in

space; interaction occurs only at the interface gi: Thus, a
new definition for the fluid domain would hold:
O'

f ¼ Of \Oi
s: In fluid–structure interaction analysis the

sets of (1), (2) and the no-slip constraint (5) are most
commonly employed with the fluid domain defined as
Of \Oi

s: using for example an ALE technique. The basic
idea of the fictitious domain method is to extend the
fluid problem defined in Of \Oi

s to a problem defined in
all of Of ; while still forcing the solution to satisfy (5).
However, the fluid contents enclosed by Oi

s may not

Fig. 1. Sample of an immersed domain Oi
s with boundary gi in Of :

J. De Hart et al. / Journal of Biomechanics 36 (2003) 103–112104
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 Algorithm 

1. Solve Navier-Stokes equations(INS) for blood 

flow velocity and pressure 

2. Solve structure equations for radial  and 

longitudinal deformations of the vessel wall  

3. Update the mesh 

4. Update radial velocity at vessel wall 

5. t = t + Δt 

6. Continue from Step 1



1D structure and 2D axisymmetric Artery model

Quarteroni, Alfio; Tuveri, Massimiliano; Veneziani, 
Alessandro. “Computational vascular fluid dynamics: problems, models, and 
methods''  Comput Visual Sci 2:163-197 (2000).

ξ
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Axisymmetric Navier-Stokes equations

• Blood flow is axisymmetric flow with the assumption of 
no tangential velocity 

• Can use cylindrical representation of the incompressible 
Navier–Stokes equations with no tangential velocity:

3 INS
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where u is the radial velocity, w is the longitudinal velocity, p is pressure, ⇢ is the density of

blood (constant), and ⌫ = µ/⇢ is the kinematic viscosity (also constant).

3.1 Mathematical transformation of Fluid Equation B27-29
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1D structure formulation
• 1D structure equations are 

based on the Ottesen’s formula. 
• The structure equations come 

from the forces acting on the wall 
• He first balances internal(T) and 

external forces(P). 
• Then reformulates P into T: 
!
!
• Thus, get the 1D structure 

equations

job
2004/1/27
page 257

B.3. Motion of the Vessel Wall 257

θ r n

θ

t

xH

Nθ

St ′

Tt ′

St

Nt

Sθ ′

Sθ
Tθ

Tt

Nθ ′

Tθ ′

Nt ′

Figure B.1. The top part shows the original (r, x, θ) and the new (n, t, θ) coordi-
nates. The bottom part shows the forces on an infinitesimal surface element cut out of the
vessel. N is the force acting across the vessel wall, S is the shearing force acting on the
side of the element, and T is the force acting normal to each of the edges. The subscripts
t and θ indicate the direction according to the coordinate system following the surface of
the vessel, and the superscript ′ indicates that the force is acting in the negative direction
(e.g., Nt ′ = −Nt ).

B.3.2 External Forces

The internal forces must be balanced by external forces acting on the element. Let total
external force be denoted by

P = Pt t̂ + Pnn̂, (B.6)

where Pt and Pn are the tangential and normal components, respectively. P can be split into
inertial forces, tethering forces, and surface forces. In the following sections, these will be
analyzed separately.D
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260 Appendix B. Momentum Equation for a Small Artery

B.3.3 Balancing Internal and External Forces
When a wave is propagated along a vessel, the vessel will dilate. Hence the surface will
appear as shown in Figure B.2. Considering this surface, we can derive the equilibrium
equations. Balancing of internal and external forces will also be carried out in two parts:
one for tangential contributions and one for normal contributions.

Tθ

Pn

Pt

R(x) dθ

v

Tθ

(

1 +
(

∂R
∂x

)2
)

1
2
dx

R(x + dx) dθT (x + dx)

dθ

T (x)

(

π
2 − v

)

Figure B.2. A volume element and its internal Ti and external Pi forces.

Balancing Tangential Components of Internal and External Forces

The area of the surface in Figure B.2 is given by Rdθ
√

1 + (∂R/∂x)2 dx, and the tangential
part Ptan of the external strain Pt is given by

Ptan = PtRdθ

√

1 +
(

∂R

∂x

)2

dx.

The pressure load on any given volume element is −Pext . This should be balanced by the
internal stress over the surface element projected in the tangential direction. Thus the stress
over the surface in the tangential direction is given by

Ttan1 = −Tt (x)R(x)dθ + Tt (x + dx)R(x + dx)dθ ≈ ∂

∂x
(TtR)dxdθ,

where the last equality is approximated using the first order Taylor expansion for Tt (x +
dx)R(x + dx).D
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B.3. Motion of the Vessel Wall 261

Furthermore, the stress from the radial tension also contributes. As seen on the right-
hand side of the surface element in Figure B.2, the radial tension Tθ gives contributions in
both the tangential and the radial directions. Since we have axial symmetry, the net tension
around the vessel at any location is zero. The part of Tθ pointing backward in the tangential
direction is given by

Ttan2 = −Tθ cos
(π

2
− v

)

√

1 +
(

∂R

∂x

)2

dx = −Tθ
∂R

∂x
dθdx,

where v is defined as shown in Figure B.2. Balancing Ttan1 and Ttan2 with Ptan and dividing
by dθdx gives

−Tθ
∂R

∂x
+ ∂

∂x
(RTt ) + PtR

√

1 +
(

∂R

∂x

)2

= 0. (B.17)

Balancing Normal Components of Internal and External Forces

Balancing normal internal stresses with the normal external strain gives

Pn = κθTθ + κt Tt ,

where κi , i = θ, t , is the curvature in the i direction. As seen in Figure B.3, the curvatures
in the longitudinal and angular directions are given by

κθ = 1
R

/

√

1 +
(

∂R

∂x

)2

and κt = −∂
2R

∂x2

/

√

1 +
(

∂R

∂x

)2
3

.

Hence the balancing equation becomes

κθTθ + κt Tt − Pn = 0

⇔ Tθ

R
− Tt

∂2R

∂x2

/

(

1 +
(

∂R

∂x

)2
)

− Pn

√

1 +
(

∂R

∂x

)

= 0. (B.18)

Inserting (B.15) and (B.16) into (B.17) and (B.18) gives

−Tθ
∂R

∂x
+ ∂

∂x
(RTt )

−R

(

M0
∂2ξ

∂t2
+ Lx

∂ξ

∂t
+ Kxξ +

(

M0
∂2η

∂t2
+ Lr

∂η

∂t
+ Krη

)

∂R

∂x

)

+R

[

(Txx − Trr)
∂R

∂x
+ Trx

(

(

∂R

∂x

)2

− 1

)]

a

/

√

1 +
(

∂R

∂x

)2

= 0, (B.19)
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Furthermore, the stress from the radial tension also contributes. As seen on the right-
hand side of the surface element in Figure B.2, the radial tension Tθ gives contributions in
both the tangential and the radial directions. Since we have axial symmetry, the net tension
around the vessel at any location is zero. The part of Tθ pointing backward in the tangential
direction is given by

Ttan2 = −Tθ cos
(π

2
− v

)

√

1 +
(

∂R

∂x

)2

dx = −Tθ
∂R

∂x
dθdx,

where v is defined as shown in Figure B.2. Balancing Ttan1 and Ttan2 with Ptan and dividing
by dθdx gives

−Tθ
∂R

∂x
+ ∂

∂x
(RTt ) + PtR

√

1 +
(

∂R

∂x

)2

= 0. (B.17)

Balancing Normal Components of Internal and External Forces

Balancing normal internal stresses with the normal external strain gives

Pn = κθTθ + κt Tt ,

where κi , i = θ, t , is the curvature in the i direction. As seen in Figure B.3, the curvatures
in the longitudinal and angular directions are given by

κθ = 1
R

/

√

1 +
(

∂R

∂x

)2

and κt = −∂
2R

∂x2

/

√

1 +
(

∂R

∂x

)2
3

.

Hence the balancing equation becomes

κθTθ + κt Tt − Pn = 0

⇔ Tθ

R
− Tt

∂2R

∂x2

/

(

1 +
(

∂R

∂x

)2
)

− Pn

√

1 +
(

∂R

∂x

)

= 0. (B.18)

Inserting (B.15) and (B.16) into (B.17) and (B.18) gives

−Tθ
∂R

∂x
+ ∂

∂x
(RTt )

−R

(

M0
∂2ξ

∂t2
+ Lx

∂ξ

∂t
+ Kxξ +

(

M0
∂2η

∂t2
+ Lr

∂η

∂t
+ Krη

)

∂R

∂x

)
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[
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− 1
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1D Structure Equations
Vessel Wall Equations
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to be the state where the transmural pressure of the artery is zero. Furthermore, it is assumed
that it is adequate to apply a linear relation between stress and strain.

Let the reference state of stresses in the longitudinal and circumferential directions
be denoted by Tt0 and Tθ0 . Then the following relations can be obtained:

Tθ − Tθ0 = Eθh

1 − σθσx

(ϵr + σxϵx) and Tt − Tt0 = Exh

1 − σθσx

(ϵx + σθϵr ) , (B.21)

where Ei , i = θ, t , is Young’s modulus in the ith direction; h is the wall thickness; σi ,
i = θ, x, is the Poisson ratio in the ith direction; and ϵi , i = θ, x, is the displacement relative
to the reference state; see, e.g., Landau and Lifshitz (1986). The relative circumferential
and longitudinal displacements are given by

ϵr = η

R
and ϵx = ∂ξ

dx
.

B.5 Balancing Fluid and Wall Motions
Boundary conditions linking the velocity of the wall to the velocity of the fluid remain to
be specified. Assume that the fluid particles are at rest at the wall. Hence

[u]r=a = ∂η

∂t
and [w]r=a = ∂ξ

∂t
. (B.22)

Furthermore, assume that the component of the fluid velocity normal to the wall is equal to
the normal velocity of the inner surface of the vessel wall. Hence the normal velocity of the
wall, at a = R(x + ξ, t) − h/2, is given by

d

dt

(

r − R + h

2

)

= 0 ⇔ [u]r=a − [w]r=a
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∂x
− ∂R

∂t
= 0.

B.6 Linearization
In principle the correct number of equations and boundary conditions are present. However,
in their present form these equations are too complicated to solve analytically. As discussed
earlier, the purpose was to set up a simple system of equations for the smaller arteries.
Therefore, following Atabek and Lew (1966), we have chosen to linearize them.

The linearization is based on expansion of the dependent variables in power series of
a small parameter ϵ around a known solution. This is defined by a situation where the fluid
is at rest and the vessel is inflated and stretched. Furthermore, if ϵ = 0, then all dependent
variables give the known solution. The expansion is given by

s = s1ϵ + s2ϵ
2 + · · · for s = u, w, ξ, η, Trx, (B.23)

s̃ = s̃0 + s̃1ϵ + s̃2ϵ
2 + · · · for s̃ = p, R, Tθ , Tt , Trr , Txx, (B.24)

where s0 is a constant defining the reference state (at zero transmural pressure). Let f (r, x, t)

be either of the functions in (B.23) or (B.24). In order to accomplish the linearization,D
ow

nl
oa

de
d 

06
/0

5/
14

 to
 2

16
.9

6.
23

1.
18

8.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

job
2004/1/27
page 263

B.5. Balancing Fluid and Wall Motions 263

to be the state where the transmural pressure of the artery is zero. Furthermore, it is assumed
that it is adequate to apply a linear relation between stress and strain.

Let the reference state of stresses in the longitudinal and circumferential directions
be denoted by Tt0 and Tθ0 . Then the following relations can be obtained:
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where Ei , i = θ, t , is Young’s modulus in the ith direction; h is the wall thickness; σi ,
i = θ, x, is the Poisson ratio in the ith direction; and ϵi , i = θ, x, is the displacement relative
to the reference state; see, e.g., Landau and Lifshitz (1986). The relative circumferential
and longitudinal displacements are given by

ϵr = η

R
and ϵx = ∂ξ

dx
.

B.5 Balancing Fluid and Wall Motions
Boundary conditions linking the velocity of the wall to the velocity of the fluid remain to
be specified. Assume that the fluid particles are at rest at the wall. Hence

[u]r=a = ∂η

∂t
and [w]r=a = ∂ξ

∂t
. (B.22)

Furthermore, assume that the component of the fluid velocity normal to the wall is equal to
the normal velocity of the inner surface of the vessel wall. Hence the normal velocity of the
wall, at a = R(x + ξ, t) − h/2, is given by

d

dt

(

r − R + h

2

)

= 0 ⇔ [u]r=a − [w]r=a

∂R

∂x
− ∂R

∂t
= 0.

B.6 Linearization
In principle the correct number of equations and boundary conditions are present. However,
in their present form these equations are too complicated to solve analytically. As discussed
earlier, the purpose was to set up a simple system of equations for the smaller arteries.
Therefore, following Atabek and Lew (1966), we have chosen to linearize them.

The linearization is based on expansion of the dependent variables in power series of
a small parameter ϵ around a known solution. This is defined by a situation where the fluid
is at rest and the vessel is inflated and stretched. Furthermore, if ϵ = 0, then all dependent
variables give the known solution. The expansion is given by

s = s1ϵ + s2ϵ
2 + · · · for s = u, w, ξ, η, Trx, (B.23)

s̃ = s̃0 + s̃1ϵ + s̃2ϵ
2 + · · · for s̃ = p, R, Tθ , Tt , Trr , Txx, (B.24)

where s0 is a constant defining the reference state (at zero transmural pressure). Let f (r, x, t)

be either of the functions in (B.23) or (B.24). In order to accomplish the linearization,D
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Algorithm for 2D axisymmetric Artery
1.Solve Navier-Stokes equations(INS) for blood flow velocity(u,w) 

and pressure(p) on a 2D mesh 

2.Solve structure equations for radial  and longitudinal 

deformations(η,ξ) of the vessel wall on a 1D mesh  

3.Update the mesh using η , ξ , since vessel wall has moved  

4.Update radial velocity at vessel wall, since radial blood velocity at 

vessel wall must equal radial wall velocity 

5.Repeat Step 1-4 until a stable solution is reached 

6. t = t + Δt 

7.Continue from Step 1

9



         Finite elements
• Divide domain into parts 
• Seek approximate solution over 

each part 
• Assemble the parts

10
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Continuous Galerkin finite element method

3 INS
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where u is the radial velocity, w is the longitudinal velocity, p is pressure, ⇢ is the density of

blood (constant), and ⌫ = µ/⇢ is the kinematic viscosity (also constant).

3.1 Mathematical transformation of Fluid Equation B27-29
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Transformed Fluid Equations
To solve INS: 
Use continuous Galerkin finite element method to approximate the 
equations 
!
!
!
!
!
!
!
[Me]{DUe} + [Ce]{Pe} + [Ke]{Ue} = 0	



[Me]{DWe} + [Ce]{Pe} + [Ke]{We} = 0
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Semi-discretization for Fluid Equations

3 INS
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where u is the radial velocity, w is the longitudinal velocity, p is pressure, ⇢ is the density of

blood (constant), and ⌫ = µ/⇢ is the kinematic viscosity (also constant).
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Method for Fluid Equations
• After using finite element method, Euler method and 

projection method are used. 
• Euler forward method: 
!
!

• Projection method: 
 - Use SPHI to replace pressure( p ) and PHI to  
   update SPHI
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1D Structure Equations
To solve Structure Equations : 
1. Use continuous Galerkin finite element method 

!
!
!
!
!
!
!

2.  Use Newmark method to solve system of second order 
PDE

{Me} ∂2
∂t2
{Ne}+{Ce} ∂

∂t
{Ne}+{Ke}{Ne}+{De}{Xe}={Qe}+{Se}

• c0 = E

✓

h/(2a⇢) ⇡ 5m/s Moens-Korteweg wave propagation factor

4.3 Boundary Conditions

B22, Wall-fluid interface

u|
r=a

=

@⌘

@t

w|
r=a

=

@⇠

@t

0 = u|
r=a

� w|
r=a

@R

@x

� @R

@t

4.4 Mathematical transformation
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Plugging in the combined identities and divergence theorem:
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4.4.2 Second structural equation
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Newmark Method
This method involves equations of the form:

The solution of this equation for the Newmark Method is :

partial differential equations giving the deformation of the wall from its resting state. Alteration

of the blood flow causes deformation of the vessel wall, and vice versa. The algorithm consists

of the following steps:

1. Solve the incompressible Navier-Stokes equations (Eq. 1-3) for the velocity (u, v) and

the pressure p on a 2D mesh in PICMSS using the method described in Williams [2].

2. Solve the structure equation (Eq. 4) for the radial deformation ⌘ of the vessel wall on a

1D mesh identical to the edges of the 2D fluid mesh.

3. Update the mesh, since the vessel wall has moved.

4. Update the radial velocity v at the vessel wall: v = 1
�t⌘ + 1

�t
@⌘
@t since the radial blood

velocity at the vessel wall has to be equal to the radial wall velocity.

5. Go to step (1) and repeat it until a stable solution, where k(u, v)k1 < 10�4, is reached.

6. Update the time, t = t+ �t.

7. Continue from Step 2.

3.2 Fluid flow

3.3 Vessel walls

The equation (Eq. 4) describing the deformation of the vessel wall is reduced to an ordi-

nary differential equation (ODE) through transformation to weak finite element form and semi-

discretization. The ODE is then solved by the trapezoidal rule member of the Newmark family

of methods, as described in Hughes [3]. This method involves equations of the form:

[M ]{@
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2
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}+ [K]{⌘} = F,

4

where M ,C,K,and F are derived from the original parameters of the model. The solution of

this equation for the Newmark scheme is:
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2
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2
({@
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⌘
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2
}n + {@

2
⌘

@t

2
}n+1)

4 Results

Currently, the process of verification by comparison with results in Quarteroni et al. [1] is

still in progress, because output from PICMSS diverges rapidly. Within a few timesteps, the

deformation of the vessel wall is so extreme that it is clearly unrealistic. From the results in

Quarteroni et al. [1], the deformation should be very small. Reducing the timestep produces no

improvement. Possible improvements to remove this problem include checking the new fluid-

structure interaction components in PICMSS for coding errors, changing the way the moving

mesh is generated, and experimenting with physical constants.

5 Conclusion

Future research includes working with the 2D small artery model presented in Olufsen [4] and

Ottesen et al. [5]. It includes radial and axial deformation of vessel walls. Dr Olufsen solved a

simplified version of the small artery equation system analytically, and numerical results from

PICMSS could be compared with those analytical results. Other possibilites include modeling

arteries with a hole torn in the vessel wall, abdominal aortic aneurysms, or networks of arteries.

5
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1D Version

• serial code for 1D finite element method and Newmark 
method 

• change X to DDX and N to DDN 
• get full couple equations 
!
!
!

• solve the above matrix by Lapack

0

B@
A B

C D

1

CA

0

B@
DDX

DDN

1

CA =

0

B@
F1

F2

1

CA (1)

17
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Benchmark Result
• Benchmark result of 1D vessel wall 
• 1D serial code
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Procedures for Fluid Equations
• darter, or star1 
• Parallel Interoperable Computational Mechanics 

Simulation System (PICMSS) 
• 5 processors 
• Each responsible for several rows of grid 
• 1cm diameter x 6cm length

r

x
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PICMSS
• parallel computational software  

• solving equations with continuous Galerkin finite element 
method  

• C program with MPI  

• uses Trilinos iterative library for solving systems of linear 
equations generated internally by finite element method.  

• 2D triangle and quadrilateral, and 3D tetrahedron and 
hexahedron master elements.  

• fluid flow problems directly written in partial differential 
equation(PDE) template operator form. 
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Benchmark Results
• Benchmark result of fluid equations 
• Inlet: all are 1 except boundary point 
• blood vessel model: 1cm diameter x 6cm length 
• Outlet:
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2D axisymmetric structure equations

• Simulate the vessel wall with no tangential velocity 

• Use the same structure equations on 3D mesh 

!
!
!
!
!
!

• Use PICMSS to solve
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2D axisymmetric structure equations(PICMSS)



24

Full 3D Fluid Equations

3D structure Equations
• Use the approach from Raoul et al. [3] 
• D is the deformation of vessel wall, and p is the pressure of the 

wall

4.4.3 3D structural equation
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DIEL 
• Multi-physics problems combining multiple sets of 

governing principles and conditions in a variety of medium 
• Physical domains or conditions are separated and 

computed independently 
• Interaction occurs through a set of shared boundary 

points, weak coupling 
• Reduces the complexity of the system 
• Can be solved efficiently on a parallel computer



26

Workflow Using DIEL
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Fig. 20. 3D reconstruction of the carotid bifurcation of Fig. 19

Fig. 21. Mesh of the carotid bifurcation of Fig. 19

everywhere within the heart, and describe a fluid containing
an immersed system of contractile fibers.
A coupled approach is instead based on interacting two

different models, one for fluids, the other for structures,
through suitable matching conditions which play the role
of boundary conditions for the submodels. As previously
pointed out, the fluid model adopted here is based on Navier–
Stokes equations, in particular (but not necessarily) for
a Newtonian fluid. The model for the description of vascular-
wall dynamics is presented in Sect. 4.1. This approach en-
ables the splitting of the global computation into a sequence
of separate computations for the fluid and the vascular wall,
therefore yielding a considerable reduction of the computa-
tional complexity. On the other hand, maintaining physical
and numerical consistency in the splitting approach may not
be easy. Indeed, several issues have to be addressed in this
regard, noticeably:

1. the matching conditions between fluid and structure must
be physically consistent on the one hand; on the other
hand, they should provide either model with boundary

conditions that are mathematically admissible for its well
posedness;

2. although each sub-model, with the provided boundary
condition, yields a stable problem, it is by no means guar-
anteed that the global problem is stable too;

3. the flow model is naturally written in Eulerian coordi-
nates, whilst the wall model is expressed in Lagrangian
coordinates. The interaction between these two heteroge-
neous frames demands a suitable approach, in order to
set up a numerical device for the analysis of the coupled
“moving boundary” problem.

In Sect. 4.2, we focus on some issues relevant to point 1 and
2. The third issue is faced in Sect. 5.2.

4.1 Mechanical models of vessel walls

As pointed out in Sect. 2, the soft tissues of the vessel walls
consist of different materials with different mechanical fea-
tures such as collagen fibers, elastin, smooth muscle and wa-
ter. Due to this complex structure, it is difficult to provide
a synthetic mathematical description of the mechanical be-
havior of vessel walls. The investigations of the structural and
biochemical properties of human soft tissues and their strict
correlations, e.g. in view of the production of biocompatible
tissues for vascular prosthesis, have been defined as “tissue
engineering” (see e.g. [66]). Here, we limit ourselves to re-
calling the most relevant structural features and the simplest
mathematical models for arterial tissues.
To start with, we point out that arteries are inelastic and

anisotropic (cf. [11, 25]). They are inelastic since they ex-
hibit different stress-strain curves in loading and unloading.
A convenient approach, which falls under the name of pseu-
doelasticity, treats the two phases in a separate manner, since
the actual behavior of the arterial tissue, under periodic load-
ing and unloading, does not depend on the strain rate (see [25]
and Fig. 22). When the deformations around an interesting
point are really small, it is possible to linearize the prob-
lem suitably around such an equilibrium point (incremental
elasticity). In the pseudoelastic approach, the description of
the mechanical behavior of the tissues in the two (loading
and unloading) phases can be described in terms of a Strain
Energy Density Function (SEDF), that links stresses and
deformations for the two different phases, via a differentia-
tion. Namely, we have: Σij = ∂(SEDF)

∂Eij
, where Σij is the stress

Ratio 

Tension

Loading

Unloading

Longitudinal Extension 

Fig. 22. Typical loading–unloading curves of carotid arteries ([25])
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tensor, while Eij denotes the Green (quadratic) strain ten-
sor (see [25]). Obviously, a quadratic SEDF corresponds to
Hooke’s law of linear elasticity. On the other hand, the form
of SEDF that seems to be more suitable for the arteries is an
exponential one (see [25]);
Arteries are anisotropic since the fiber structure of the tis-

sue yields a different behavior for different loading directions.
More precisely, arteries are orthotropically cylindrical: their
behavior is described along the cylindrical components (ra-
dial, longitudinal and circumferential). Moreover, experimen-
tal evidence suggests that radial deformation is much smaller
than deformations along the other directions (see [11]).
Neglecting their anisotropic behavior and the circumfer-

ential deformations, we can model vascular walls as mem-
brane by means of the Navier equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρwh
∂2Dr

∂t2
= kGh

∂2Dr

∂z2
− Eh
1− ζ2

(
ζ

R0
∂Dz

∂z
+ Dr

R20

)
+Φ1

ρwh
∂2Dz

∂t2
= Eh
1− ζ2

(
ζ

R0
∂Dr

∂z
+ ∂2Dz

∂z2

)
+Φ2

(25)

The unknown variables Dr and Dz represent radial and lon-
gitudinal vessel displacement in the local frame of reference
(r, z, θ); h is the wall thickness; R0(z) is the arterial reference
radius at rest; k is the so called Timoshenko shear correc-
tion factor, G the shear modulus, E the Young modulus, ζ
the Poisson ratio (which is equal to 1/2 for an incompres-
sible material); ρw the arterial wall volumetric mass. Finally,
Φ= [Φ1 Φ2]T is the forcing term due to the external forces,
including the stress induced by the fluid: indeed, they depend
on the velocity v and the pressure p of the blood.
Remark that this model (as well as its simplifications that

we are going to introduce) is based on a Lagrangian descrip-
tion of motion of the wall motion as it is referred to a material
domain Γ 0w, which the spatial coordinates belong to, corres-
ponding to the (say) “rest position” Dr = Dz = 0.
We could introduce further useful simplifications of

Navier equations (25). Assuming that the effects of the for-
cing term Φ due to the fluid can be reduced only to the
pressure of blood, and that the longitudinal displacements and
deformations are very small, the second equation in (25) can
be disregarded and the first yields the simplified relationship:

ρw
∂2η

∂t2
+ E

(1− ζ2)R0
η= Φ

h
(26)

having set η = Dr , Φ = Φ1 = pw − p0 (which is usually
called transmural pressure); pw is the pressure on the wall
essentially due to the fluid, while p0 is a reference value of ex-
ternal pressure (at rest, when pwall = p0, we have η= 0, i.e.
r = R0). If we assume a cylindrical vessel of length L at rest,
then η= η(z, θ, t), where z and θ are, respectively, the longi-
tudinal and angular directions, so that 0≤ z ≤ L, 0≤ θ ≤ 2π
(see Fig. 23).
The scalar model (26) is an ordinary differential equa-

tion of second order in time for η; η depends on z and θ . It
is known as the independent-rings model (see [41, 79]) as it
assumes that the vessel is made of independent-rings which
are rigidly linked to one another and can only deform along
the radial direction. Despite its intrinsic limitations, the ex-
treme simplicity of model (26) makes it still very popular

0Ω Ω
Fig. 23. Geometrical models and notations for the wall motion: 3D model

(see e.g. [41, 60, 79, 86]). More complicated models are based
on shell equations, the coupling of two-dimensional domains,
both for the fluid and the structure (see e.g. [56]), and axial-
symmetric models ([62]).
When the coupling between a 2D fluid and a 1D struc-

ture is considered (see Fig. 24), anothermodel of intermediate
complexity between (26) and (25), which has been developed
to account for longitudinal inner actions as well, is encom-
passed by the following initial boundary value problems:

ρwh
∂2η

∂t2
= −a∂

4η

∂z4
+b

∂2η

∂z2
+ c

∂3η

∂t∂z2
− eη+Φ. (27)

Again η(z) describes the “radial” displacement with respect
to the rest configuration

Γ 0w ≡
{
(z, y) ∈R2|z ∈ (0, L), y ∈ (−R, R)

}
.

Φ = Φ1 is the external force (in the radial direction), while
a, b, c, e are positive constants depending on the physical fea-
tures of the wall tissue. More precisely, with respect to the
independent-rings model, equation (27) takes inner longitu-
dinal actions into account: a accounts for the inner action of
bending in the tissue, b for the tension; c is a term accounting
for the viscoelasticity of the tissue. Equation (27) is supposed
to hold for each branch (Γ+

wall and Γ
−
wall) of Γwall, and needs

therefore boundary conditions on η at the endpoints of Γ +
wall

and Γ−
wall.

In the case a= b= c= 0, we recover the 2D independent-
rings equation. On the other hand, in the case of zero longitu-
dinal displacements, the equation considered in [62] reduces
to (27) with a = 0. In the case b = c = e = 0, the law for
the wall motion reduces to the very classical equation of the
vibrating rod, and we will, therefore, call equation (27) a
“generalized rod” model.
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Fig. 24. Geometrical models and notations for the wall motion: 2D model
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Future Plans

• Run the code of 2D axisymmetric structure equations 
on PICMSS and compare with result of 1D serial code 

• Solve full 3D fluid equations and structure equations 

• Solve fully coupled fluid-structure equations  

• Use DIEL to solve coupled equations
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