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Overview

Utilize a set of programs to simulate the blood flow in arteries

Evaluates the stability of implemented solvers to handle fluid

structure interaction problems

Use continuous Galerkin finite element method and will

extend to discontinuous Galerkin finite element method

Utilize DIEL to solve weak coupling equations




Fluid-Structure Interactions

* Blood flow causes deformation of the vessel wall and

deformation of the wall changes the boundary conditions of
blood flow.

 Two components
— Fluid (blood) modeled by Navier-Stokes equations

— Solid structure (vessel wall) modeled by partial differential
equations of 1D, 2D and 3D, giving radial and longitudinal

deformation of wall from its resting state

* Develop a coupling strategy to solve fluid-structure equations
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Fluid Structure Interaction Equations

Fluid Equations(INS)
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. Continue from Step 1

. Solve Navier-Stokes equations(INS) for blood

flow velocity and pressure

. Solve structure equations for radial and




1D structure and 2D axisymmetric Artery model

Quarteroni, Alfio; Tuveri, Massimiliano; Veneziani,
Alessandro. “Computational vascular fluid dynamics: problems, models, and
methods" Comput Visual Sci 2:163-197 (2000).




Axisymmetric Navier-Stokes equations

 Blood flow is axisymmetric flow with the assumption of
no tangential velocity

» Can use cylindrical representation of the incompressible
Navier—Stokes equations with no tangential velocity:
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1D structure formulation

Q r

» 1D structure equations are t
4 AR

based on the Ottesen’s formula. ey
* The structure equations come / \

from the forces acting on the wall
* He first balances internal(T) and

external forces(P). i %)’
 Then reformulates P into T: i
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where k;,1 = 0, t, 1s the curvature in the i direction.

* Thus, get the 1D structure
equations




1D Structure Equations

Vessel Wall Equations
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where E;, i = 0, ¢, is Young’s modulus in the ith direction; 4 is the wall thickness; o;,
i = 0, x,1s the Poisson ratio in the i th direction; and €;,i = 6, x, is the displacement relative

to the reference state;




Algorithm for 2D axisymmetric Artery

1.Solve Navier-Stokes equations(INS) for blood flow velocity(u,w)

and pressure(p) on a 2D mesh

2.Solve structure equations for radial and longitudinal

deformations(n,¢) of the vessel wall on a 1D mesh

3.Update the mesh using n, € , since vessel wall has moved

4.Update radial velocity at vessel wall, since radial blood velocity at

vessel wall must equal radial wall velocity
5.Repeat Step 1-4 until a stable solution is reached
6.t=1t+ At

7.Continue from Step 1




Finite elements

* Divide domain into parts

» Seek approximate solution over
each part

« Assemble the parts




Continuous Galerkin finite element method
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Transformed Fluid Equations

To solve INS:

Use continuous Galerkin finite element method to approximate the
equations
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Semi-discretization for Fluid Equations
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Method for Fluid Equations

 After using finite element method, Euler method and
projection method are used.

 Euler forward method:
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* Projection method:
- Use SPHlI to replace pressure( p ) and PHI to
update SPHI
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1D Structure Equations

To solve Structure Equations :

1. Use continuous Galerkin finite element method
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2. Use Newmark method to solve system of second order
PDE




Newmark Method

This method involves equations of the form:
0%n
o2
The solution of this equation for the Newmark Method is :
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1D Version

serial code for 1D finite element method and Newmark
method

change X to DDX and N to DDN
get full couple equations

A B DDX F'1
C D DDN F2

solve the above matrix by Lapack




Benchmark Result

« Benchmark result of 1D vessel wall
1D serial code




Procedures for Fluid Equations

darter, or star1

Parallel Interoperable Computational Mechanics
Simulation System (PICMSS)

D processors

Each responsible for several rows of grid

1cm diameter x 6cm length

F_




PICMSS

parallel computational software

solving equations with continuous Galerkin finite element
method

C program with MPI

uses Trilinos iterative library for solving systems of linear
equations generated internally by finite element method.

2D triangle and quadrilateral, and 3D tetrahedron and
hexahedron master elements.

fluid flow problems directly written in partial differential
equation(PDE) template operator form.




Benchmark Results

Benchmark result of fluid equations

Inlet: all are 1 except boundary point

blood vessel model: 1cm diameter x 6cm length
Outlet:

<

Cecular Duct, Hex Mesh
Re « 100, PICMSS Solution




2D axisymmetric structure equations

« Simulate the vessel wall with no tangential velocity

« Use the same structure equations on 3D mesh
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« Use PICMSS to solve




2D axisymmetric structure equations(PICMSS)
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OPERATORS 4
OP_1 * cn200 =*
OP_2 * cn2xx =*
OP_3 % cn20x =
OP_4 * cnl@ =*

NUMBER_OF_SETS 5
DDUDDV_EQUATION_SET

OPERATORS 4

OP_1 OP_2 OP_3 OP_4

EQUATIONS 2

RHS_DDU 15
mCKU1 OP_1 DDU
MKU2 OP_2 DDU
DCUDT2 OP_3 DDV
DCU OP_3 VL
DCUDT OP_3 DVL
DCUDT2 OP_3 DDVL
MSU OP_4 1

C OP_1 DUL

CDT OP_1 DDUL
KU1 OP_1 UL

KU2 OP_2 UL
KU1DT OP_1 DUL
KU2DT OP_2 DUL
KU1DT2 OP_1 DDUL
KU2DT2 OP_2 DDUL
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RHS_DDV 11
mCKV OP_1 DDV
DVDT2 OP_3 DDU
DCV OP_3 UL
DCVDT OP_3 DUL
DCVDT2 OP_3 DDUL
MSV OP_4 1

C OP_1 DVL

CDT OP_1 DDVL
KV OP_1 VL

KVDT OP_1 DVL
KVDT2 OP_1 DDVL

JAC_DDU_by_DDU 2
mCKU1 OP_1
MKU2 OP_2

JAC_DDU_by_DDV 1
DCUDT2 OP_3

JAC_DDV_by_DDU 1
DVDT2 OP_3

JAC_V_ by V 1
mCKV 0P_1

NO_NEU_BC_TYPE_U @

NO_NEU_BC_TYPE_V 0

_EQUATION_SET 1:
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Full 3D F|UId Equations
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3D structure Equations
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« Use the approach from Raoul et al. [3]

* D is the deformation of vessel wall, and p is the pressure of the
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DIEL

« Multi-physics problems combining multiple sets of
governing principles and conditions in a variety of medium

* Physical domains or conditions are separated and
computed independently

* Interaction occurs through a set of shared boundary

points, weak coupling
* Reduces the complexity of the system
« Can be solved efficiently on a parallel computer




Original
Mesh

Execution
Start

Workflow Using DIEL

Structure Solver

Tecplot
Paraview

Update Internal
Geometry with
GMSH

Nodal
Mapping

Export Tet
Mesh

Pre-Processing
Tool

Parallel
Input Files

Fluid Solver

Tecplot
Paraview




Future Plans

Run the code of 2D axisymmetric structure equations
on PICMSS and compare with result of 1D serial code

Solve full 3D fluid equations and structure equations
Solve fully coupled fluid-structure equations

Use DIEL to solve coupled equations
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