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Overview

o Accuracy & prediction

o Design of light absorbing
devices

o Density Function Theory
(DFT) based approaches

o Basis Set




Absorbance Spectra

o A spectroscopic technique that measures
the absorption of radiation as a function
of wavelength (or energy) of light.
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UV-Vis Absorption

o Higher energy
l o Electronic transitions
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Basis Sefts

o A set of functions combined in linear combinations to
create molecular orbitals

o Typically atomic orbitals centered on atoms

Electron Correlation > B l
Basis Set Type
HF DFT MP2 MP4 QCISD(1) Full CI
STO-nG Minimal
’ 6-31G Split-Valence
6-31G* Polarized
6-31+G Diffuse
High Angular
Momentum
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Types of Basis Sets

o Minimal (STO-NG)
o Extended Basis Sefts
o Double-Zeta, TZ, QZ

Constant

A
O, (r) = q)ZSSTO (r,{1) + dq)ZSSTO (r,{3)

Slater Orbital 1 Slater Orbital 2

o Split-Valence
o Polarized
o Diffuse




Pople

Diffuse
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Computational Cost

Basis #U?‘f;; sr:‘;' Relative Time
STO-3G 26 0.05
6-31G 48 0.3
6-31G* /2 |
6-311G* %0 3
6-311G++ 264 235
cc-pVTZ 204 82
cc-pVQZ 400 3400

aug-cc-pCVQL 712 41000




Energy

Our Hypothesis

= == Calculated Excited State

=
Calculated
Absorbance
Energy
Actual Excited State
Actual
Absorbance
Energy

x- -

= Calculated Ground State

Actual Ground State

Calculated state
energies are bound
(always higher)

Ground state
energies converge
faster than excited
state energies

Absorbance
energies are the
differences in
energies.




Molecules

Anthracene

Chlorobenzophenone

Water

Benzaldehyde

Benzene

Bipyridy!

Indene
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Parameters

0 6-31G

o0 6-31G**

o0 6-311G**

0 6-311G++

o Ccc-pVIZ

o cc-pVD/Z

0 AQug-cc-pVIL
o aug-cc-pVDZ

Geometry Optimization

Qchem 4.1
DFT/B3LYP
Basis: LANL2DZ

Absorbance Spectra Calculations

Machine: NICS Darter
TD-DFT in NWChem 6.3
DFT/PBEY6
Basis Sets: Pople, Dunning




Resulis




Oscillator Strength

631G =
631G =
6-311G++ =
6-311G** ==
cc-pVTZ
cc-pVDZ
aug-cc-pVTZ
aug-cc-pVDZ

Experimental ===




8,19

Oscillator Strength

Indene

6-31G
6-31G**
6-311G++
6-311G**
cc-pVTZ
cc-pVDZ
aug-cc-pVTZ
aug-cc-pVDZ
Experimental

4.6 4,8 3

* Energy (eV)




Oscillator Strength
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Oscillator Strength
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Benzene
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DISCUSSION

o Red Shifts
o Convergence at augmented polarized basis sets

o Agreeable with UV-Vis experimental data

o cc-pVIZ




Future Work
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Questions?




