

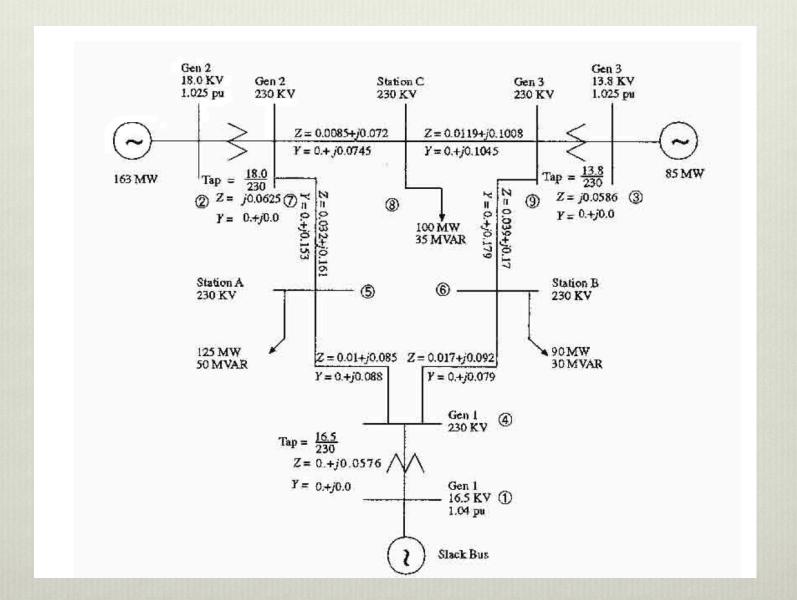
Background

- ❖ Power System: Power grid with transformers, buses, generators, loads, etc.
- Steady State system vs. Dynamic system

Algebraic Equations: power distribution

$$P_i = \sum_{k=1}^{n} |V_i| |V_k| [g_{ik} \cos(\theta_i - \theta_k) + b_{ik} \sin(\theta_i - \theta_k)]$$

$$Q_i = \sum_{k=1}^n |V_i| |V_k| [g_{ik} \sin(\theta_i - \theta_k) - b_{ik} \cos(\theta_i - \theta_k)]$$


Differential Equations: power generation

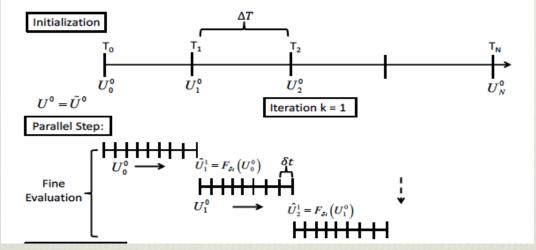
$$\frac{dS}{dt} = w_B S_m
\frac{dS_m}{dt} = \frac{1}{2H} [-DS_m + T_m - T_e]
\frac{dE'_q}{dt} = \frac{1}{T'_{do}} [-E'_q + (X_d - X'_d)I_d + E_{fd}]
\frac{dE_{dc}}{dt} = \frac{1}{T_c} [-E_{dc} - (X'_q - X'_d)I_q]$$

$$\frac{dE'_d}{dt} = \frac{1}{T'_{qo}} \left[-E'_d - \left(X_q - X'_q \right) I_q \right]$$

$$\frac{dE_{dc}}{dt} = \frac{1}{T_c} \left[-E_{dc} - \left(X'_q - X'_d \right) I_q \right]$$

Power Diagram

Purpose


Simulate power outages faster than real time

* Currently:

PSS®E by Siemens requires 1 minute of computation for a 1 second of real-time simulation (Eastern Interconnect → more than 60,000 buses and 8,200 generators.)

Methodology

Parareal – time decomposition

- Newton's Method
 - non-linear algebraic equations
- Runge-Kutta 4 –differential equations

$$J(\mathbf{x}) = -\begin{bmatrix} \frac{\partial P_1}{\partial \delta_1}(\mathbf{x}) & \dots & \frac{\partial P_1}{\partial \delta_N}(\mathbf{x}) & \frac{\partial P_1}{\partial |V_1|}(\mathbf{x}) & \dots & \frac{\partial P_1}{\partial |V_N|}(\mathbf{x}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial P_N}{\partial \delta_1}(\mathbf{x}) & \dots & \frac{\partial P_N}{\partial \delta_N}(\mathbf{x}) & \frac{\partial P_N}{\partial |V_1|}(\mathbf{x}) & \dots & \frac{\partial P_N}{\partial |V_N|}(\mathbf{x}) \\ \frac{\partial Q_1}{\partial \delta_1}(\mathbf{x}) & \dots & \frac{\partial Q_1}{\partial \delta_N}(\mathbf{x}) & \frac{\partial Q_1}{\partial |V_1|}(\mathbf{x}) & \dots & \frac{\partial Q_1}{\partial |V_N|}(\mathbf{x}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial Q_N}{\partial \delta_1}(\mathbf{x}) & \dots & \frac{\partial Q_N}{\partial \delta_N}(\mathbf{x}) & \frac{\partial Q_N}{\partial |V_1|}(\mathbf{x}) & \dots & \frac{\partial Q_N}{\partial |V_N|}(\mathbf{x}) \end{bmatrix}$$

Goals & Future Work

- ❖ Overall Goal: Determine how to stabilize the system before it collapses by running simulations of initial causes faster than real time
- My Goal: Understand the process and successfully run an entire simulation
- Parallelize the Parareal code

Sources

- Gurrala, Gurunath. "Power System Parallel Dynamic Simulation Framework for Real-Time Wide-Area Protection and Control."
- Gurrala, Gurunath, Aleksandar Dimitrovski, Pannala Sreekanth, Srdjan Simunovic, and Michael Starke. "Parareal in Time for Fast Power System Dynamic Simulations."
- Meier, Alexandra Von. Electric Power Systems a Conceptual Introduction. Hoboken, N.J.: IEEE:, 2006. Print.

Questions?