IS

Joint Institute for A %

Computational Sciences gEErmrd

Sciences

Modeling of a Graphene
Membrane Rupture with DFTB
and Improving its
Computational Efficiency

By: Krystle Reiss, Jacob Blazejewski,
Jacek Jakowski, Kwai Wong

CSURE Program 2015

e UNIVERSITYof OAK
TENNESSEEWUIr RIDGE

KNOXVILLE National Laboratory

Joint Institute for % @
Computational Sciences el

Abstract

CSURE Program 2015

Density Functional Tight Binding (DFTB) is being used to find the cause of the catastrophic
rupture of a graphene membrane under the effect of an electric field. Efforts are also being
made to increase the computational efficiency of the program by replacing LAPACK calls

with ScaLAPACK calls.

Introduction
DFTB+ is being used to determine the cause of a graphene membrane rupture under
the influence of an electric field.! When an electric field of 3 V/nm is applied to a graphene

membrane suspended in a 1 M KCI solution, the membrane ruptures catastrophically,

sometimes ripping completely in half, Carbons | Hydrogens | Corners | Flat or Warped

Several different variations of graphene Free Flat
Warped
membranes are being tested under varying 40 Flat
Frozen
conditions using molecular dynamics (MD) 218 Warped
Flat
simulations. Free
Warped
58
Unfortunately running these DFTB Flat
Frozen
.)) Warped
calculations is extremely computationally
Flat
. . . Free
expensive, with the most demanding Warped
62
] })) Flat
calculations being linear algebra operations. Frozen
Warped
. . L. 508
The time spent on these operations is divided Flat
Free
. . w d
amongst evaluating forces, determining 90 arpe
Flat
lect ic struct d . d handli Frozen
electronic structure and moving and handling Warped

Table 1 gives all types of membranes used in MD simulations

the matrices to be used in the operations.

Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE S —
National Laboratory

CSURE Program 2015

>

Joint Institute for & @ /
Computational Sciences el j
Y

The DFTB code utilizes Linear Algebra Package (LAPACK) functions to perform these

calculations. Under these routines DFTB calculations of certain systems can still take far to
long to be practical. In an attempt to speed up the software’s calculations the LAPACK

routines are therefore being replaced with Scalable LAPACK (ScaLAPACK) routines.
Modeling of Graphene

Graphene, the two-dimensional form of graphite, is a fairly new material with many
fascinating properties. Stronger than its equivalent weight in steel and very elastic,
graphene is composed of a highly conjugated system of carbon atoms giving it 150 times
the mobility of silicon. This means that graphene is an extremely good conductor.
However, graphene is not yet a viable replacement for silicon switches in electronic
devices, as graphene has no band gap. Silicon is a semiconductor, meaning that its band gap
is just small enough for electrons to cross it if an electric field of suitable magnitude is
applied. When no electric field applied, silicon’s electrons are unable to cross the gap.
Graphene’s lack of a band gap makes it metallic and electrons can move between HOMO
and LUMO energy levels without the application of an electric field. Since graphene cannot
be activated and deactivated like silicon can, it cannot generate binary code, which inhibits
its ability to replace silicon in electronics.

Dr. Ivan Vlassiouk has been experimenting with applying electric fields to circular
graphene membranes suspended in a 1 M potassium chloride aqueous solution. When an
electric field with a strength of 3 V/nm is applied to these membranes, they rupture. There
is no correlation between membrane size and rupture. The tear is so catastrophic,

sometimes ripping the membrane entirely in half, that its cause cannot be determined. It is

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

CSURE Program 2015

Joint Institute for % @
Computational Sciences el

possible that there are defects in the membrane, such as a Stone-Wales defect or a vacancy
site,? or it may be that an ion is forced through the membrane, causing the rupture.
Computational methods, specifically DFTB+, are being used to determine why the
membrane is rupturing. Because of its efficiency, DFTB is ideal for this type of simulation.
Molecular dynamics (MD) simulations were set to run for femtosecond 5000 timesteps but
were limited to 24-hour runtimes due to scheduling protocols. MD simulations were run
using the VelocityVerlet driver with the NoseHoover thermostat set to 300 K and the
coupling strength was 600 cm1. The Hamiltonian was DFTB with an SCC tolerance of
1.0¢10-6. The Fermi filling temperature was originally set to 0 K, but the SCC failed to
converge at this temperature. When increased to 300 K, convergence was achieved, so this
temperature was used throughout the rest of the simulations. Figure 1A and 1B show the

results of these basic MD simulations.

-390.6 -397.7

Potential Enefgy Potential Enefgy

-390.8 Total Energy B Total Energy
391 Kinetic Energy -397.8 Kinetic Energy
-391.2 -397.9
_ %914 _
< £ -398
E -391. E
S -301. [
5 & -398.1
-39
-392. -398.2
-392.4 8
P -398.3
-392.6
-392.8 - - - - -398.4 - - - -
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Step Step

Figure 1A (left) show the results of a 5000 step MD simulation on a 218 carbon sheet where each edge carbons has been
saturated with a single hydrogen. Figure 1B (right) shows the same simulation conducted on a similar sheet where the
carbons along the armchair edge were saturated with two hydrogens each. In both, kinetic energy values have been
shifted down ~400 H for scaling purposes.

Unfortunately, larger sheet (508 and 1018 carbons) take much more time and do
not finish the 5000 step MD simulation within the 24-hour wall clock limit. The 508-carbon

membrane is able to complete 1500 to 2500 steps, depending on edge saturation, while the

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

CSURE Program 2015

>

Joint Institute for & @ /
Computational Sciences el j
Y

1006-carbon membrane does not even finish 300 steps. Even utilizing the GPU, the 1006-

carbon membrane only increased it's completed steps by ~50%. This led to the largest
membrane being dropped from simulations, even though it would have provided the most
realistic results. The 508-carbon membranes completed enough steps for the results to be
considered meaningful. The smallest membrane, 218 carbons, finished the MD simulation
within twelve hours.

In addition to differently sized membranes, the effects of constraints and waves
were also evaluated. Two types of constraints were tested: freezing all membrane edges
and freezing only the corners. Freezing entire edges was deemed to be too limiting as it
prevented the natural dynamics of the system and so was abandoned. Frozen corners
allowed for adequate membrane movement and membranes constrained in this way were
tested alongside unconstrained membranes. To create waves in the membranes, an MD
simulation was run applying a temperature of 2000 K to the system. This caused the
membrane to spasm and warp, creating the desired waves. This allowed for points of
polarity to form when an electric field was applied. It should be noted that unless
constrained, the membranes reassumed their planar forms upon the removal of the
extreme temperature.

To simulate the application of a 3 V/nm electric field, two point charges (¥15 eV)
were placed on either side of the membrane 10.00 nm away along the y axis (normal to the
membrane). No significant effects were noted except a minor flattened region in the
unconstrained planar membrane (Figure 2A). Initial drops in energy show the membranes
moving into their ideal geometries. The warped membrane (2C & 2D) have larger initial
energy drops as they attempt reassume their planar shapes.

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

SS

Joint Institute for

Computational Sciences

CSURE Program 2015

-391.

Energy (H)

-392
3025

-393

Potential Enefgy +
Total Energy
Kinetic Energy ~ »

0 1000

-389.5

2000

3000 4000

Step

5000

-390

-390.5

-391

Energy (H)

-391.5

-392

-392.5

-393

Potential Enefgy +
Total Energy
Kinetic Energy ~ »

0 1000

2000

3000 4000

Step

5000

Energy (H)

Energy (H)

-390.6
-390.8

-391
-391.2

3014 §

-391.8
-391.8
-382

3922 &
-302.4 &
3926 |

-392.8

-389.5

-390

-390.5

-391

-391.5

-392

-392.5

-393

-393.5

Potential Ener'gy +
Total Energy R
Kinetic Energy ~ »

0

1000

2000

3000 4000 5000

Step

Potential Enefgy +
Total Energy
Kinetic Energy

0

1000

2000

Figure 2A (top left) shows 218 C:40 H planar membrane under a 3 V/nm electric field. Figure 2B (top right) shows
the same membrane with corners frozen. Figure 2C (bottom left) shows a warped membrane under the same
conditions as 2A. Figure 2D (bottom right) shows a warped membrane under the same conditions as 2B. As in Figure
1, all kinetic energies were shifted down for scaling.

3000 4000 5000

Step

With no significant effects caused by the 3 V/nm field, the field strength was

increased to 30 V/nm by increasing both of the point charges tenfold. Although it did not

break any of the membranes, this did cause significant movement in the unconstrained

membranes. These twisted to align themselves with the field, shown by the second major

drop in energy in Figure 3A & 3C.

Modeling of a Graphene Membrane Rupture
with DFTB and Improving its Computational Efficiency

rus UNIVERSITYof
TENNESSEE

KNOXVILLE

OAK
RIDGE

National Laboratory

SS

Joint Institute for %
Computational Sciences el

CSURE Program 2015

-390.6
-390.8

-391
-391.2

-391.8
-391.8

-392
-392.2
-392.4

Energy (H)

-392.8

-389.5

-301.4 §,

302.6 7§

Potential Ener'gy +
Total Energy
Kinetic Energy

0

1000

2000

3000 4000
Step

5000

-390

-390.5

-391

-391.5

Energy (H)

-392

-392.5

-393

-393.5

Potential Enefgy +
Total Energy
Kinetic Energy

1000

2000

3000 4000
Step

5000

Energy (H)

Energy (H)

-389.5

-390

-390.5

-391

-391.5

-392

-392.5

-393

Figure 3A (top left) shows 218 C:40 H planar membrane under a 30 V/nm electric field. Figure 3B (top right) shows the
same membrane with corners frozen. Figure 3C (bottom left) shows a warped membrane under the same conditions as
2A. Figure 3D (bottom right) shows a warped membrane under the same conditions as 3B. As in Figure 1, all kinetic
energies were shifted down for scaling. The drops in energy in the two unconstrained membranes are due to the
membranes twisting the align themselves with the electric field.

Potential Enefgy +
Total Energy
Kinetic Energy ~ »

1000 2000 3000 4000 5000
Step

Potential Enefgy +
Total Energy
Kinetic Energy >

1000 2000 3000 4000 5000
Step

To more closely examine what phenomena might be occurring during the

simulation, single point calculations were performed for 21 individual steps from the

overall MD simulation (every 250th step from 0 to 5000). From these steps, data from a

carbon atom on each edge (C10, C55, C109, C164) was taken, including orbital populations

and resolved total energy. Samples of these results are given in Figure 4. There were no

significant effects caused by the 3 V/nm electric field. Movement caused by the 30 V/nm

field is clearly evident in the single point calculations as the left edge moved toward the

anode and right edge toward the cathode. This caused a spike in the electron population of

Modeling of a Graphene Membrane Rupture

with DFTB and Improving its Computational Efficiency

s UNIVERSITYof OAK
TENNESSEE RIDGE

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

the 2p orbitals on the right edge and a drop on the left edge. Conversely the resolved total

energy dropped near the cathode and increased near the anode.

1.7 T 3.05 T
Top Energy —— Top Edge 2p ——
Laft Energy Left Edge 2p
Bottom Energy -------- Bottom Edge 2p --------
Right Energy Right Edge 2p
A7 1 3
/) 1
A72 4 295 - VAR
\ TSN e e \
;é g 29 » g
5 i e
285
1.75 28 w
-1.76 . . . - 275
5 10 15 20 5 10 15 20
Step Step
1.7 T 3.05 T
o — i —
Bottom Energy -------- Bottom Edge 2p -------
ghom Energy =g —
A7 - b 3r
-1.72 1 295 -
£ 2 P M N e .
B ﬁ 2.9
1.74 285
175 28 W
-1.76 . . . - 275
5 10 15 20 5 10 15 20
Step Step
7 Top Energy —— 808 ' ' " TopEdgezp ——
e L
Right Energy -~ Right Edge 2p -
A7 - 3t]
172 205 . g i
29 ¢ P f
.| N |
W/
1.76 28 5
1.76 . . . N 275
5 10 15 20 5 10 15 20
Step Step
Figure 4A (top left) is the energy of a 218 C:40 H membrane. Figure 4B (top right) is the filling of 2p orbitals for the
same membrane. The top edge carbon is lower in energy as it is bonded to three other carbons, whereas as the others
are bound to two carbons and a single hydrogen. Figure 4C (middle left) is the energy of the same membrane under a 3
V/nm electric field. Figure 4D (middle right) is the filling of 2p orbitals for the same membrane under a 3 V/nm electric
field. Figure 4E (bottom left) is the energy of the same membrane under a 30 V/nm electric field. The drastic split
between the left and right edges was caused by the membrane aligning itself with the field. Figure 4F (bottom right) is
the filling of 2p orbitals of the same membrane under a 30 V/nm electric field.

Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency TENNESEEEILLE RIDGE

National Laboratory

'I:s * @ ’ CSURE Program 2015
Joint Institute for — /
Computational Sciences smm ¢

As graphene’s mobility is so high, it is unlikely that the membrane rupture is due to
an electric field alone. This is supported by the results shown in Figure 4. As even the
30 V/nm field applied in a vacuum did not significantly stress the membrane, it is more
likely that the rupture was due to imperfections in the membrane or an ion puncturing
it. There are several types of imperfections common to graphene membranes. The first,
and most simple, are vacancy-type defects. In these, one or more carbons are absent from
the graphene membrane, disturbing the conjugated system and lowering the strength of
the membrane. Six variations of a vacancy-type defect were created for these simulations.
These can be seen in Figure 5. While initial MD simulations showed no apparent difference
between a mono-vacancy and a pristine graphene membrane, the di-vacancy defects
allowed for significantly more warping movement in the membrane, comparable to that
seen in a pristine membrane subjected to 2000 K temperatures. After initial MD
simulations were run to acquire baseline results, a 3 V/nm field was applied to each of the
membranes in addition to warped versions of the double vacancy defects output from the
original MD simulations. Simulations were run both with and without frozen corners.

So far these simulations with defective sheets have not yielded a rupture. Future
simulations will attempt to force an ion, such as fluoride, through the membrane. As the
membrane was suspended in an ionic solution when it ruptured, it is possible that the
rupture was caused by an ion being shot through the membrane by the electric field.
Fluoride will be an ideal candidate for DFTB MD simulations as it is extremely
electronegative (meaning it will not lose its electron easily and become neutral) and it is
small with fewer non-valance electrons for DFBT to estimate for. This anion will be placed
between the membrane and the anode in the hopes that it may puncture the membrane.

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

Figure 5A (top left): Mono-vacancy defect

Figure 5B (top middle): Di-vacancy defect

Figure 5C (top right): Reconstructed di-vacancy defect

Figure 5D (bottom): Severe bending during MD simulation due to di-vacancy defect. Shown is step 2300 from the
membrane shown in 6B

Improving Computational Speed of DFTB

Even though DFTB is a semi-empirical method, which allows it to be faster than
more traditional methods such as Density Functional Theory (DFT), the code can be
computationally expensive when evaluating large systems. The largest cost comes from
the linear algebra operations, such as matrix-matrix multiplication, Choleskey factorization,
and diagonalization. Current DFTB code utilizes LAPACK (Linear Algebra Package)
functions to perform these basic operations. LAPACK is inherently a serial code. There are
some libraries that allow LAPACK to use multiple threads to perform calculations

faster. However, when executing calculations on a supercomputer it is best to use

Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

10

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences el j

functions that can operate over multiple nodes that are working in parallel. ScaLAPACK
was developed for just such a purpose. ScaLAPACK calls are designed utilize a distributed
memory system that is then run in parallel. The distributed memory allows a global input
matrix to be split into smaller pieces. These smaller pieces are then each sent to their own
processor, where the desired linear algebra function is performed. Each processor
receiving a portion of the matrix operates in parallel, allowing for faster calculations.
ScaLAPACK functions are able to communicate between various compute nodes by
utilizing Basic Linear Algebra Communication Subprograms (BLACS). BLACS is easily
initiated with four function calls. A callto blacs_pinfo3 sets up the virtual machine that
will be using the process grid to operate in parallel. It determines the number of processes
available for use in the process grid as well as labels each process for the user to have a
better way of distinguishing the processes. The blacs_get3 call establishes a context
label for the process grid that is then used to identify this function throughout the rest of
the code. This label is especially important when more than one process grid is being
operated within one code. Next, the blacs_gridinit3 function takes every available
CPU process and assigns it coordinates in the machines process grid. The user is able to
selectively shape the desired process grid size by inputting the desired dimensions of
the. In all work for this project only square process grids were used for ease of
visualization and computation. Lastly,a callto blacs_gridinfo3 simply returns
information about the process grid with the input context label argument. In other words
it serves as a double check that all process grid information was correctly
established. Once a process grid is finished being used it should be released using
blacs_gridexit3 to allow the context label to be recycled if necessary. The

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

11

National Laboratory

'I:s * @ ’ CSURE Program 2015
Joint Institute for — /
Computational Sciences smm ¢

blacs_exit3 call releases all memory allocated for the process grid as well as any

remaining process grid labels.

blacs_pinfo (me,procs)

blacs_get (0, , icontxt)
blacs_gridinit(icontxt, , prow, pcol)
blacs_gridinfo(icontxt, prow, pcol, myrow, mycol)

blacs_gridexit(icontxt)
blacs_exit(o)

Figure 6A (top) shows ample calls for initializing BLACS process grid, while Figure 6B (bottom) shows sample calls for
terminating a BLACS process grid (bottom)

After the process grid has been created the global matrix must be divided over the
process grid. Each CPU process on the grid receives a local array, which is a portion of the
global matrix. The data is distributed in a block-cyclic fashion* (see Figure 7). The local
arrays utilize dynamic memory allocation. This means each process must allocate memory
space for the local array, and deallocate the memory after the local arrays are no longer
needed. To perform the block cyclic distribution, two subroutines were found to
accomplish this task® (see Appendix I). One takes the coordinates of an entry in the global
matrix and then returns the entry’s CPU process grid’s coordinate as well as its local array
coordinate. The other works in the opposite direction by using the coordinates of a local
array entry along with its process grid location to obtain its global array coordinates (see

Appendix II).

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

12

National Laboratory

SS A

Joint Institute for
Computational Sciences gErmrdl

sssss o5

% CSURE Program 2015

Processor 2

Processor 3 Processor 4

Figure 7 Demonstrating clock cyclic distribution of a 4 x 4 matrix onto a 2 x 2 process grid using a 1 x 1 block size.

Each ScaLAPACK call requires an array descriptor to trace every global memory entry to its

process and process array location.

ides_a(
ides_a(
ides_a(
ides_a(

icontxt
n

n

nb

nb

ides_a(
ides_a(
ides_a(
ides_a(
ides_a(

N N N N N N N N N

myArows

Figure 8 Sample array descriptor

Once the matrix has been distributed and an array descriptor successfully assigned the
user is ready to call a ScaLAPACK function. Functions that were of specific interest to this

investigation are seen in Table 2.3

Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

13

National Laboratory

chs % @ . CSURE Program 2015
‘lett’)irr::pIStsatEgﬁ;IfoSrciences (‘

Y

LAPACK ScaLAPACK Function

Function Function

DGEMM PDGEMM Performs aAB=3C, where o and {3 are scalars and A,B,C are all N
x N matrices

DPOTRF PDPOTRF Performs a Cholesky factorization of a real symmetric positive
definite N x N matrix utilizing solely its upper or lower
triangular matrix

DPOTRI PDPOTRI Inverts a real symmetric positive definite N x N matrix by
utilizing the output from DPOTRF/PDPOTRF

DSYEV PDSYEV Determines the eigenvalues, and if desired, eigenvectors of an N
x N real symmetric matrix.

DSYEVD PDSYEVD Determines the eigenvalues, and if desired, eigenvectors of an N
x N real symmetric matrix utilizing a divide and conquer
algorithm

DSYGVD PDSYEVD Determines the eigenvalues, and if desired, eigenvectors of the
following eigenproblem A*x = AB*x, where A and B are
symmetric positive definite N x N matrices.

Table 2: LAPACK functions and their ScaLAPACK equivalents that were used in the benchmarking. See appendices for
examples of code.

Common parameters required of a ScaLAPACK function include the name of the
local array along with its array descriptor, and the coordinates of its leading entry. Some
functions allow for extra calculation options such as utilizing the transpose of an input
matrix or solving different arrangements of eigenvector problems. Eigen solver functions
also require work matrices to allow for adequate memory space to perform calculations.

Rather than simply replacing LAPACK calls in the DFTB code with ScaLAPACK calls,
a little bit of benchmarking was done. All of the ScaLAPACK codes from Table 2 were
combined into one code and timed (see the Appendix II for benchmarking code). The

following graph demonstrates preliminary speed up seen when using ScaLAPACK

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

14

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

functions. As the process grid size of ScaLAPACK is increased, so did the speed of each

calculation.

350
300
250

Wall Clock Time (s)
N
(=)
(=}

LAPACK
ScaLAPACK 16 proc

ScaLAPACK 25 proc
ScaLAPACK 36 proc

LAPACK Function/ScaLAPACK Function

Figure 9 Preliminary benchmarking results comparing LAPACK and ScaLAPACK functions. The transparent bar is the
result of calculations run on Darter. All other calculations were run on Beacon using Intel’s Math Kernel Library (MKL)
along with the Intel compiler. The shown times are the longest processor run time.

All modifications to the DFTB code have taken place mainly in the scf_diis_atrs
subroutine in the scf. 90 file. The BLACS process grid initiation and termination have
been added to the prog. f90 file. LAPACK functions are being replaced with ScaLAPACK
functions by inserting subroutines that contain the ScaLAPACK function call in place of
LAPACK functions (See Appendix III for subroutines). The modified DFTB code is then
tested by running a single point MD simulation of an ethene molecule and comparing its
results with those of LAPACK DFTB. No benchmarking has been performed on the
modified DFTB code as of yet. Currently, only the LAPACK matrix-matrix multiplication

function (DGEMM) has been successfully replaced with the ScaLAPACK matrix-matrix

15 Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

SS

CSURE Program 2015

Joint Institute for
Computational Sciences

16

o:
multiplication (PDCEMM). Work is also being done to replace the LAPACK eigensolver
(DSYEV) with the ScaLAPACK eigensolver (PDSYEV). Unfortunately there is an error in
ScaLAPACK'’s eigenvectors, which is skewing the DFTB calculations. More work is still
needed to determine the exact cause of the problem.

The next steps of this project will include continuing to push the limits of
ScaLAPACK routines to determine the ideal parameters for process grids. Items to be
explored are adjusting the block size to be larger, distributing contiguous blocks of
memory, and continuing to increase process grid size. The ultimate goal is to be able to
perform 1 MD timestep in under a minute for large systems. As for the DFTB code, once the
eigen solver is fixed, the rest of the investigated ScaLAPACK routines will also be added to
the code as subroutines. There will also be some investigation on improving the memory

efficiency of the DFTB code by having it generate the global matrix data within the local

process arrays.

Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

17

Acknowledgements

We would like to thank the National Science Foundation for funding our research this
summer along with University of Tennessee, Knoxville and Oak Ridge National Lab for

hosting the CSURE program.

References

[1] DFTB+[Computer software].(2013).Retrieved from http://www.dftb-plus.info

[2] Daniels, C.; Horning, A.; Phillips, A.; Massote, D.; Liang, L.; Bullard, Z.; Sumpter, B.;
Meunier, V. Mechanisms Of Stress Release in Graphene Materials.

[3] NETLIB Repository. University of Tennessee-Knoxville & Oak Ridge National Lab. Web. 7

[4] LibSci Example https://www.nersc.gov/users/software/programming-libraries/math-
libraries/libsci/libsci-example/ (accessed Jun 2015).

[5] Susan, B. Details of Example Program #1
http://netlib.org/scalapack/slug/node28.html (accessed Jul 2015).

Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

.JI:S ‘!& CSURE Program 2015
Joint Institute for ‘
Computational Sciences el
Appendix I : Block-Cyclic Distribution Code
! convert global index to local index in block-cyclic distribution
subroutine g21(i,n,np,nb,p,il)

implicit none

integer :: i ! global array index, input
integer :: n ! global array dimension, input
integer :: np ! processor array dimension, input
integer :: nb ! block size, input

integer :: p ! processor array index, output
integer :: il ! local array index, output
integer :: iml

iml = i-1

p = mod((iml/nb),np)

il (iml/ (np*nb))*nb + mod(iml,nb) + 1

return
end
! convert local index to global index 1in block-cyclic distribution

subroutine 12g(il,p,n,np,nb,1)

implicit none

integer :: il ! local array index, input
integer :: p ! processor array index, input
integer :: n ! global array dimension, input
integer :: np ! processor array dimension, input
integer :: nb ! block size, input
integer :: i ! global array index, output
integer :: ilml
ilml = il-1
i = (((ilml/nb) * np) + p)*nb + mod(ilml,nb) + 1
return
end
18 Modeling of a Graphene Membrane Rupture mUNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

_IIES% o

CSURE Program 2015

‘é(grr;tplﬂts;ggx;:%rciences / *’*‘;
APPENDIX II : ScaLAPACK Benchmarking Code

I e i T o o o L e o o
I e I o o o L e o o
! Timing of the ScalLAPACK: PDGEMM,PDPOTRI,PDPOTRF,PDSYEV,PDSYEVD,PDSYGVX

! filename: time_scalapack.f90

! compile: mpiifort -o timing.f90 test scalapack.f90
I e i T o o o L e o o

! input: input.txt

! prow number of rows in proc grid

! pcol number of columns in proc grid

! n number of rows/columns in matrix A

! nb matrix distribution block size

! oputput: fort.u, where u=10+processor number, and stdout

I e o e s L e e s st I T B S
I e o o e st e o B R

use timing
implicit none

integer :: MC, MM, TRF, TRI, EV, EVD, GVX !if loop variables 1 = run

integer :: prin ! matrix print variable

integer :: n, nb ! problem size and block size

integer :: m, nz ! number of eigen values and vectors

integer :: myunit ! Tocal output unit number

integer :: myArows, myAcols ! size of local subset of global array

integer :: i,j, igrid,jgrid, iproc,jproc, myi,myj, pi ! navigating variables
integer open_status, close_status ! variables for read in files

integer :: numroc ! blacs routine

integer :: me, procs, icontxt, prow, pcol, myrow, mycol ! blacs data
integer :: 1lwork, liwork leigen variables

integer :: info ! scalapack return value
integer, dimension(:), allocatable ifail,iclustr !PDSYGVX outputs
integer, dimension(:), allocatable iwork ! work array

integer, dimension(9) :: ides_a, ides_b, ides_c, ides_z ! scalapack array desc

real*8, dimension(:), allocatable :: W,WW, work ! eigen values and work arrays

real*8, dimension(:), allocatable
real*8, dimension(:,:), allocatable A,B,C,D,E,F,Z,ID ! global arrays
real*8, dimension(:,:), allocatable myA,myB,myC,myZ ! local arrays
real*8 :: vl, vu, 1il, iu,x,y l!unreferenced range values

real*8 :: abstol,orfac,PDLAMCH ! PDSYGVX variables

gap ! PDSYGVX output

! Read problem description

open(unit=15,file="./ABCp.txt",status="old",iostat=open_status)
read (15, *)prow

read (15, *)pcol

read(15,*)n

read (15, *)nb

open(unit=15,file='./input.txt',status='old',iostat=open_status)

read(15,*),prow ! number of process rows

read(15,*),pcol ! number of process columns

read(15,*),n ! leading dimension of global matrix
|

read(15,*),nb leading dimension of block size

read(15,*),prin ! if prin=1 print all calculations

read(15,*),MC I if 1 print global matrices

read(15,*) ,MM ! if 1 perform PDGEMM on A*B = C

read(15,*),TRF ! if 1 perform PDPOTRF Cholesky factorization of A
read(15,*),TRI ! if 1 perform PDPOTRI of A (MUST HAVE TRF.eq.1l)

Modeling of a Graphene Membrane Rupture we UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency TENNESEEEILLE RIDGE

National Laboratory

.JI:S % CSURE Program 2015
Joint Institute for '
Computational Sciences
read(15,*) ,EV ! if 1 perform PDSYEV to compute eigenvalues and optionally
eigenvectors
read(15,*),EVD I if 1 perform PDSYEVD to compute eigenvalues and optionally
eigenvectors
read (15, *),GVX I if 1 perform PDSYGVX to compute eigenvalues and optionally
eigenvectors
lwork = -1 ! must be -1 to give proper dimension for work
liwork = (7 * N) + (8 * pcol) + 2 !must be -1 to give proper dimension for
liwork
if (((n/nb) < prow) .or. ((n/nb) < pcol)) then
print *,"Problem size too small for processor set!"
stop 100
endif
| ===================GLOBAL MATRIX SET UP==========================
call time_start(1)
I ¥***Al LOCATING GLOBAL MATRICES****
'MATRIX GUIDE:
! A :: PDGEMM, PDPOTRF, PDPOTRI
! B :: PDGEMM, PDSYEV
' C PDSYEVD
' D PDSYGVX
! E :: PDSYGVX
allocate (A(N,N))
allocate (B(N,N))
allocate (ID(N,N)) ! will be the identity
! fill A and B with random numbers
call random_number (A)
call random_number (B)
DO i = 1,N
DO j = 1,N
A(j,1)=A(i,j) ! assure A is symmetric
B(j,i)=B(i,j) ! assure B is symmetric
ID(i,j)=0.0d0
ID(i,1)=1.0d0O
END DO
END DO
! make A & B diagonal dominate to ensure positive definite
A=A+ (ID * N)
B =B+ (ID * N)
! the order of allocation is an attempt to maximize memory usage
deallocate(ID)
allocate (C(N,N))
allocate (D(N,N))
allocate (E(N,N))
Cc=8B
D =A
E=8B
call time_stop(1l)
|====================[NITIALIZE PROCESS GRID==========================
call blacs_pinfo (me,procs)
call blacs_get (0, 0, icontxt)
call blacs_gridinit(icontxt, 'R', prow, pcol)
call blacs_gridinfo(icontxt, prow, pcol, myrow, mycol)
myunit = 10+me !processor output file label "fort.myunit"
! process grid info check
write(myunit,*)"-------- "
write(myunit,*)"Output for processor ",me," to unit ",myunit
write(myunit,*)"Proc ",me,": myrow, mycol in p-array is ", &
myrow, mycol
flush(myunit)
! determining dimension of local array
20 Modeling of a Graphene Membrane Rupture ﬂ[IEUI\H\/ERSITYof OAK
with DFTB and Improving its Computational Efficiency ENNESSEEUI RIDGE

National Laboratory

MS /

Joint Institute for

Computational Sciences

21

myArows = numroc(n, nb,
myAcols = numroc(n, nb,

myrow, O,
mycol, O,

prow)
pcol)

! process grid info check

write(myunit,*)"Size of global array is
write(myunit,*)"Size of block is
write(myunit,*)"Size of local array is
flush(myunit)

if (me.eq.0) then

write(*,*)"Size of
write(*,*)"Size of
write(*,*)"Size of
end if

global array is
block is
local array 1is

, N

if (MC.eq.1) then
write(myunit,*)"--- matrix check ---
write(myunit,*) 'Matrix A’
do i =1,N
write (myunit,9998)
end do
write(myunit,*)
write(myunit,*)
write(myunit,*)
do i =1,N
write(myunit,9998) (B(i,j), j
end do
write(myunit,*)
write(myunit,*)
do i =1,N
write(myunit,9998) (C(i,j), j
end do
write(myunit,*)
write(myunit,*)
do i =1,N
write(myunit,9998) (D(i,j), j
end do
write(myunit,*)
write(myunit,*)
do i =1,N
write(myunit,9998) (E(i,j), j
end do
write(myunit,*)
write(myunit,*)
do i =1,N
write(myunit,9998) (Z(i,j), j
end do
write(myunit,*)
write(myunit,*)
do i =1,N
write(myunit,9998) (ID(i,j),
end do
write(myunit,*)
write(myunit,*) 'Matrix W'
do i =1,N
write(myunit,9998) W(i)

(ACi, 1),

'Matrix B'

'Matrix C'

'Matrix D'

'Matrix E'

'Matrix Z'

"Matrix ID'

write(*,*) 'Time for Matrix Generation

| ====================S§TART PDGEMM============

if (MM.eq.l) then
Write (myundt, ®) "% sk sk sk PDGEMM* * %k ok sk x
I ¥***xINTIALIZE LOCAL ARRAYS****

Modeling of a Graphene Membrane Rupture
with DFTB and Improving its Computational Efficiency

,n," x ",n
n ,nb,ll X ll,nb
",myArows," x ",myAcols

this prints the info check in the master output file

X , N

ll,nb,ll X ”,nb
", myArows," x ",myAcols

| =====================GLQBAL MATRIX PRINT CHECK=========================

i=1.N)

=1,N)

=1,N)

=1,N)

=1,N)

=1,N)

j=1.N)

(sec)', timetab(l)

rus UNIVERSITYof
TENNESSEE

KNOXVILLE

CSURE Program 2015

OAK
RIDGE

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

/[=)'

allocate (myA(myArows,myAcols))
allocate (myB(myArows,myAcols))
allocate(myC(myArows,myAcols))

write(myunit,*)"--- before MM -----
do i=1,n
call g21(i,n,prow,nb,iproc,myi) ! see subroutines
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
myA(myi,myj) = A(i,])
myB(myi,myj) = B(i,])
myC (myi,myj) 0.0do
! check matrix filling
if (prin.eq.l) then
write(myunit,*)"A(",i,",",j,")", &
to--> myA(C",myd, "Lt my gL ") =" myA(my T, myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"B(",i,",",j,")", &
Yo--> myB(",myd, "t my L") =", myB(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"C(",i,",",j,")", &
to-=> myCCt,myd, Lt my g,) =", myClmy T, myj), &
L', jproc,")"

"on proc(",iproc,’
end if
end if
end do
end if
end do
flush(myunit)

I ****PREPARE ARRAY DESCRIPTORS FOR SCALAPACK****
ides_a(l) 1 ! descriptor type
ides_a(2) icontxt ! blacs context
ides_a(3) n ! global number of rows
ides_a(4) n ! global number of columns
ides_a(5) nb ! row block size
ides_a(6) nb ! column block size
ides_a(7) 0 ! initial process row
ides_a(8) 0 ! initial process column
ides_a(9) myArows ! leading dimension of local array
! assiging descriptors to all local matrices
do i=1,9
ides_b(i)
ides_c (i)
enddo

ides_a(i)
ides_a(i)

I¥*¥**CALL PDGEMM****
call time_start(2)
call pdgemm('T','T',n,n,n,1.0d0, myA,1,1,ides_a, &
myB,1,1,ides_b,0.d0, &
myC,1,1,ides _c)
call time_stop(2)

! Print results
write(myunit,*)"--- after MM -----

do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then

Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

22

National Laboratory

.JI:SA CSURE Program 2015
Joint Institute for ¥
Computational Sciences
if (prin.eq.l) then
write(myunit,*)"A(",i,",",j.")", &
"o-=> myA(t,myd, "t my g, ") =" myA(my i, myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"B(",i,",",j.")", &
"o--> myB(",myi, ", ", myj,")=",myB(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"C(",i,",",j.")", &
"o-=> myC(Ct,myd, "t my g, ") =", myClmy i, myj), &
"on proc(",iproc,",",jproc,")"
end if
end if
end do
end if
end do

flush(myunit)

I ****DEALLOCATING LOCAL MATRICES****
deallocate(myA, myB, myC)
end if

if (MM.eq.1) then
write(*,*) 'Time for PDGEMM (sec)', timetab(2)
end if

if (TRF.eq.1) then

Wwrite(myunit,*) "*******PDPQTRF * % % * % * % % %
P*¥**x*INITIALIZING LOCAL ARRAYS****

allocate (myA(myArows,myAcols))

write(myunit,*)"--- before Cholesky -----
do i=1,n
call g21(i,n,prow,nb,iproc,myi) | see subroutines
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
myA(myi,myj) = A(i,])
! check matrix filling
if (prin.eq.1l)then

write(myunit,*)"A(",i,",",j,")", &
to-=> myA(Ct,mydLt t,my L) =" myA(my i myj), &
"on proc(",iproc,",",jproc,")"

end if

end if
end do
end if
end do

flush(myunit)

! ***x*PREPARE ARRAY DESCRIPTORS FOR SCALAPACK

ides_a(l) =1 ! descriptor type

ides_a(2) = icontxt ! blacs context

ides_a(3) =n ! global number of rows

ides_a(4) =n ! global number of columns
ides_a(5) = nb ! row block size

ides_a(6) = nb ! column block size

ides_a(7) =0 ! initial process row

ides_a(8) = 0 ! initial process column

ides_a(9) = myArows ! leading dimension of local array

! assigning descriptors to all local matrices

23 Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency TENNESEEEILLE RIDGE

National Laboratory

JI:SA CSURE Program 2015

Joint Institute for %
Computational Sciences el

do i=1,9
ides _b(i) = ides_a(i)
ides_c(i) = ides_a(i)
end do

I ¥*¥**CALL PDPOTRF****
call time_start(3)
call pdpotrf('U',n, myA,1,1,ides_a,info)
call time_stop(3)

! Print results
if (prin.eq.l) then
write(myunit,*)"--- after Cholesky ----- "
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then

write(myunit,*)"A(",i,",",j.")", &
"o-=> myAC"t,myd, "t my g, ") =", myA(my i, myj), &
"on proc(",iproc,",",jproc,")"
end if
end do
end if
end do
flush(myunit)
end if
I **x**xDEALLOCATE LOCAL MATRICES****
deallocate(myA)
end if

if (TRF.eq.l) then
write(*,*) 'Time for PDPOTRF (sec)', timetab(3)
end if

|====================START PDPQTRI==========================
if (TRI.eq.l) then
wr-ite(myun-it,*)"*******PDPOTRI*********"
I**¥**INITIALIZE LOCAL ARRAYS****
allocate (myA(myArows,myAcols))
write(myunit,*)"--- before inversion -----
do i=1,n
call g21(i,n,prow,nb,iproc,myi) | see subroutine
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
myA(myi,myj) = A(i,j)
! check matrix filling
if (prin.eq.l) then

write(myunit,*)"A(",i,",",i,")", &
to-=> myA(,myd, Lt my g,)=t myA(my T, my]), &
"on proc(",iproc,",",jproc,")"
end if
end if
end do
end if
end do
flush(myunit)
24 Modeling of a Graphene Membrane Rupture e UNIVERSITYof
with DFTB and Improving its Computational Efficiency "TENNESSEE

KNOXVILLE

OAK
RIDGE

National Laboratory

.JI:S& CSURE Program 2015
Joint Institute for ¥
Computational Sciences
| ***x*PREPARE ARRAY DESCRIPTORS FOR SCALAPACK***x*
ides_a(l) =1 ! descriptor type
ides_a(2) = icontxt ! blacs context
ides_a(3) =n ! global number of rows
ides_a(4) =n ! global number of columns
ides_a(5) = nb ! row block size
ides_a(6) = nb ! column block size
ides_a(7) =0 ! initial process row
ides_a(8) = 0 ! initial process column
ides_a(9) = myArows ! leading dimension of local array
! assigning descriptors to all local matrices
do i=1,9
ides _b(i) = ides_a(i)
ides_c(i) = ides_a(i)
end do
P¥**x*CALL PDPOTRI****
call time_start(4)
call pdpotri('U',n, myA,1,1,ides_a,info)
call time_stop(4)
! Print results
if (prin.eq.1l)then
write(myunit,*)"--- after inversion ----- "
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
write(myunit,*)"A(",i,",",j,")", &
"o-=> myACt,myd, "t my g, ") =", myA(my i, myj), &
"on proc(",iproc,",",jproc,")"
end if
end do
end if
end do
flush(myunit)
end if
I ****DEALLOCATING LOCAL MATRICES****
deallocate(myA)
end if
|====================TIMING PRINTING==========================
if (TRI.eq.1) then
write(*,*) 'Time for PDPOTRI (sec)', timetab(4)
end if
|====================fND PDPQTRI==========================
I ****DEALLOCATION TO SAVE MEMORY****
deallocate(A)
I ¥**x*INITIALIZING MORE GLOBAL ARRAYS****
allocate (Z(N,N))
allocate (W(N))
DO i = 1,N
W(i) = 0.0d0
DO j = 1,N
Z(i,j)=0.0d0
END DO
END DO
| ====================START PDSYEV==========================
if (EV.eq.1l) then
wr—-i te(myun-i t R *) "*******PDSYEV*********"
I¥**x*INITIALIZE LOCAL ARRAYS****
allocate (myB(myArows,myAcols))
2t Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency TENNESEEEILLE RIDGE

National Laboratory

.JI:S% CSURE Program 2015
Joint Institute for '
Computational Sciences
allocate(myZ(myArows,myAcols))
allocate(work(1l))
write(myunit,*)"--- before operation ----- "
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
myB(myi,myj) = B(i,])
myZ(myi,myj) = Z(i,])
if (prin.eq.l) then
write(myunit,*)"B(",i,",",j.")", &
to-=> myB(",myd, "t myg,) =", myB(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"Z(¢",i,",",j.")", &
Yo-=> myA(t,mydLt,t,my L) =" myZ(myd,myj), &
"on proc(",iproc,",",jproc,")"
end if
end if
end do
end if
end do

flush(myunit)

! ***x*PREPARE ARRAY DESCRIPTORS FOR SCALAPACK****

ides_a(l) =1 ! descriptor type
ides_a(2) = icontxt ! blacs context
ides_a(3) =n ! global number of rows
ides_a(4) =n ! global number of columns
ides_a(5) = nb ! row block size
ides_a(6) = nb ! column block size
ides_a(7) =0 ! initial process row
ides_a(8) = 0 ! initial process column
ides_a(9) = myArows ! leading dimension of local array
! Assigning descriptors to all local matrices

do i=1,9

ides _b(i) = ides_a(i)

ides_z (i) = ides_a(i)
end do

write(myunit,*) 'descriptor arrays assigned'
write(myunit,*)'Made it to PDSYEV'
flush(myunit)
I¥*¥**CALL PDSYEV***x*
call time_start(5)
! first call is to obtain dimension for work array
call pdsyev('V','U',n,myB,1,1,ides_b,w,myZ,1,1,ides_z,work,1lwork,info)
lwork = work(1) ! assinging lwork to proper value
deallocate(work) ! resizing work to perform calculation
allocate(work(lwork))
flush(myunit)
! second call performs actual calculation
call pdsyev('V','U',n,myB,1,1,ides_b,w,myZ,1,1,ides_z,work,1lwork,info)
call time_stop(5)
write(myunit,*) 'Completed PDSYEV'

! print resutls
if (prin.eq.l) then

write(myunit,*)"--- after operation -----
do i=1,n

call g21(i,n,prow,nb,iproc,myi)

if (myrow==iproc) then

do j=1,n
call g21(j,n,pcol,nb,jproc,myj)

26 Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency TENNESEEEILLE RIDGE

National Laboratory

JI:SA& ’ CSURE Program 2015

Joint Institute for
Computational Sciences el

if (mycol==jproc) then

write(myunit,*)"B(",i,",",j.")", &
Yo-=> myB(",myd, "t my L) =", myB(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"zZ(",i,",",j.")", &
Yo-=> myA(",myd,t,t,my L) =" myZ(myd,myj), &
"on proc(",iproc,",",jproc,")"
end if
end do
end if
end do
write(myunit,*)"--- eigen values ----- "

write(myunit, 9998) w
flush(myunit)
end if
1 ¥***DEALLOCATING ARRAYS****
deallocate(myB, myZ)
deallocate(work)
end if

if (EV.eq.1l) then
write(*,*) 'Time for PDSYEV (sec)', timetab(5)

end if
| ====================fND PDSYEV==========================
1 ¥***xDEALLOCATION TO SAVE MEMORY****

deallocate(B)

lwork = -1 ! reassin to perform PDSYEVD
! Reset W and Z
do i =1,n

if (EVD.eq.1l) then
wr-ite(myun-it,*)"*******PDSYEVD*********”
I ¥*¥**INITIALIZING LOCAL ARRAYS****
allocate(myC(myArows,myAcols))
allocate(myZ(myArows,myAcols))
allocate(work(1l))
allocate(iwork(1l))
write(myunit,*)"--- before operation -----
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
myC(myi,myj) = C(i,])
myZ(myi,myj) = Z(i,])
if (prin.eq.l) then
! check matrix filling

write(myunit,*)"B(",i,",",j.")", &
"o-=> myB(",myi, ", ,myg,")=",myC(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"zZ(",i,",",j.")", &
"o-=> myA(t,myd, "t my g,)=t myZ(myi,myj), &
"on proc(",iproc,",",jproc,")"
end if
end if
end do
end if
end do
27 Modeling of a Graphene Membrane Rupture e UNIVERSITYof
with DFTB and Improving its Computational Efficiency "TENNESSEE

KNOXVILLE

OAK
RIDGE

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

flush(myunit)

I ****PREPARE ARRAY DESCRIPTORS FOR SCALAPACK****
ides_a(l) 1 ! descriptor type
ides_a(2) icontxt ! blacs context
ides_a(3) n ! global number of rows
ides_a(4) n ! global number of columns
ides_a(5) nb ! row block size
ides_a(6) nb ! column block size
ides_a(7) 0 ! initial process row
ides_a(8) 0 ! initial process column
ides_a(9) myArows ! leading dimension of local array

! assigning descriptors to all local matrices
do i=1,9

ides_c (i)

ides_z (i)
enddo
write(myunit,*) 'descriptor arrays assigned'

ides_a(i)
ides_a(i)

P¥*x*CALL PDSYEVD****
write(myunit,*)'Made it to PDSYEVD'
flush(myunit)
call time_start(6)
! first call is to obtain dimension for work and iwork
call pdsyevd('V','U',n,myC,1,1,ides_c,w,myZ,1,1,ides_z,&
work, lwork,iwork,liwork,info)
lwork = work(1) ! assinging lwork to proper value
deallocate(work, iwork) | resizing work and iwork to perform calculation
allocate(work(lwork))
allocate(iwork(liwork))
flush(myunit)
! second call performs actual calculation
call pdsyevd('V','U',n,myC,1,1,ides_c,w,myZ,1,1,ides_z, &
work, lwork,iwork,liwork,info)
call time_stop(6)
write(myunit,*)'Completed PDSYEVD'
! print results
if (prin.eq.l) then
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
write(myunit,*)"B(",i,",",j,.")", &
"o-=> myB(",myi, ", ,myg,")=",myC(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"zZ(",i,",",j.")", &
"o-=> myA("t,myd, "t my g,)=t myZ(myi,my), &
"on proc(",iproc,",",jproc,")"
end if
end do
end if
end do
flush(myunit)
write(myunit,*)"--- eigen values -----
write(myunit, 9998) w
end if
1 ¥***DEALLOCATING MATRICES****
deallocate(myC,myZ)
deallocate(work, iwork)
end if

if (EVD.eq.1l) then

Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

28

National Laboratory

Joint Institute for
Computational Sciences

.JI:S% CSURE Program 2015

write(*,*) 'Time for PDSYEVD (sec)', timetab(6)
end if
| ====================END PDSYEVD==========================
I ****DEALLOCATION TO SAVE MEMORY****
deallocate(C)
I ****INIRIALIZINF MORE GLOBAL ARRAYS****
allocate (ifail(N))
allocate (iclustr(2*(prow*pcol)))
allocate (gap(prow*pcol))
lwork = -1 ! reassign to perform PDSYGVX
liwork = -1 ! reassign to perform PDSYGVX
! Reset W and Z
do i =1,n
W(i) = 0.0d0
do j =1,n
Z(i,j) = 0.0d0O

if (GVX.eq.1l) then

wr-ite(myun-it,*)"*******PDSYGVX*********”
I *¥*x* AL LOCATING LOCAL ARRAYS***x*

allocate (myA(myArows,myAcols))

allocate (myB(myArows,myAcols))

allocate(myZ(myArows,myAcols))

allocate(work(1l))

allocate(iwork(1l))

I ****DISTRIBUTING GLOBAL MATRIX****=
write(myunit,*)"--- before operation -----

do i=1,n

call g21(i,n,prow,nb,iproc,myi)

if (myrow==iproc) then

do j=1,n

call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then

myA(myi,myj) = D(i,j)
myB(myi,myj) = E(i,j)
myZ(myi,myj) = Z(i,j)

! matrix check
if (prin.eq.l) then

write(myunit,*)"A(",i,",",j,.")", &
to-=> myA(Ct,mydLt t my L) =" myA(my i myj), &
"on proc(",iproc,",",jproc,")"

write(myunit,*)"B(",i,",",j,.")", &
Yo-=> myA(t,myd,t,t my g,) =", myB(myi,myj), &
"on proc(",iproc,",",jproc,")"

write(myunit,*)"Z(",i,",",j,.")", &
Yo-=> myA(t,myd, Lt my g,)=t myZ(myd,myj), &
"on proc(",iproc,",",jproc,")"

end if
endif
enddo
endif
enddo

! Assinging the appropriate value accodring to documentation
abstol = PDLAMCH(icontxt,'U")
| ****PREPARE ARRAY DESCRIPTORS FOR SCLAPACK****

ides_a(l) =1 ! descriptor type
ides_a(2) = icontxt ! blacs context
ides_a(3) =n ! global number of rows
ides_a(4) =n ! global number of columns
ides_a(5) = nb ! row block size
Modeling of a Graphene Membrane Rupture mUNIVERSITYof OAK
29 i ing i : ci "TENNESSEE
with DFTB and Improving its Computational Efficiency RIDGE

KNOXVILLE

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

ides_a(6)
ides_a(7)

nb
0

column block size
initial process row
ides_a(8) 0 initial process column
ides_a(9) myArows leading dimension of local array
! assinging descriptors to all local matrices
do i=1,9
ides_b(i)
ides_z (i)
enddo

ides_a(i)
ides_a(i)

! write(myunit,*) 'descriptor arrays assigned'
write(myunit,*)'Made it to PDSYGVX'
flush(myunit)

P¥**x*CALL PDSYGVX***x*
call time_start(7)
! first call to get proper work array dimensions
call PDSYGVX(1l,'V','A','L',N,myA,1,1,&
ides_a,myB,1,1,ides_b,vl,vu,il,iu,&
abstol,m,nz,w,orfac,myZ,1,1,ides_z,&
work, lwork,iwork,liwork,ifail,iclustr,&
gap,info)
! reassign proper dimensions for work arrays
lwork = work(1l)
liwork = iwork(1)
deallocate(work, iwork)
allocate(work(lwork))
allocate(iwork(liwork))
! second call performs actual calculation
call PDSYGVX(1l,'V','A','L',n,myA,1,1,&
ides_a,myB,1,1,ides _b,vl,vu,il,iu,&
abstol,m,nz,w,orfac,myZ,1,1,ides_z,&
work, lwork,iwork,liwork,ifail,iclustr,&
gap,info)
call time_stop(7)
write(myunit,*) 'Completed PDSYGVX'

! Print Resutls
if (prin.eq.l) then
write(myunit,*)"---- after operation -----
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,i
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
write(myunit,*)"A(",i,",",j.")", &
Yo-=> myA(",mydLt,t,my L) =" myA(my i my), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"B(",i,",",j.")", &
Yo-=> myA(",myd, Lt my L) =", myB(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"Z(",i,",",j.")", &
to-=> myA(t,mydLt,t,my L) =" myZ(myd,myj), &
"on proc(",iproc,",",jproc,")"
end if
end do
end if
end do
flush(myunit)
write(myunit,*)"Number of eign values found:", m
write(myunit,*)"--- eigen values -----
write(myunit, 9998) w
write(myunit,*)"# eigen vectors computed:", nz

Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

30

National Laboratory

CSURE Program 2015

/[=)'

Joint Institute for
Computational Sciences

end if

1 ¥**x*DEALLOCATING ARRAYS****
deallocate(myA,myB,myZ)
deallocate(work, iwork)
deallocate(ifail,iclustr,gap)
end if

if (GVX.eq.1l) then
write(*,*) 'Time for PDSYGVX (sec)', timetab(7)
end if

call blacs_gridexit(icontxt)
call blacs_exit(0)

close(l5,iostat=close_status) ! end read in
9998 FORMAT(11(:,1X,F8.5))
end

I e o o A s st s T o T O o
D+++++++++++++++++++++++++SUBROUTINES+++++++++++++++++++++++++++++
I e o o A s st s T I o o

! convert global index to local index in block-cyclic distribution
subroutine g21(i,n,np,nb,p,il)

implicit none
integer :: i
integer :: n
integer :: np
integer :: nb
integer :: p
integer :: il
integer :: iml

global array index, input

global array dimension, input
processor array dimension, input
block size, input

processor array index, output
local array index, output

i-1
mod ((iml/nb),np)
(iml/ (np*nb))*nb + mod(iml,nb) + 1

iml
p
il

return
end
! convert local index to global index 1in block-cyclic distribution

subroutine 12g(il,p,n,np,nb,1)

implicit none
integer :: il
integer :: p
integer :: n
integer :: np
integer :: nb
integer :: i
integer :: ilml

local array index, input
processor array index, input
global array dimension, input
processor array dimension, input
block size, input

global array index, output

ilml
i

il-1
(((ilml/nb) * np) + p)*nb + mod(ilml,nb) + 1

return
end

Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

31

National Laboratory

SS

7

Joint Institute for

% @ \ CSURE Program 2015
Computational Sciences #

32

4

Appendix IIl : MYPDGEMM and MYPDSYEV DFTB Subroutines

PDGEMM Subroutine for global matrices AB=C

subroutine MYPDGEMM(n,nb,mb,icontxt,prow,pcol,myrow,mycol, A, B, C)

implicit none

integer :: n ! Tleading dimension of global matrices--INPUT
real*8, dimension(n,n) :: A,B ! global matrices to be multiplied--INPUT
real*8, dimension(n,n) :: C ! global product matrix--OUTPUT
integer :: icontxt, prow,pcol,myrow, mycol ! blacs data--INPUT
integer :: nb, mb ! problem size and block size
integer :: myunit ! Tocal output unit number
integer :: myArows, myAcols ! size of local subset of global array
integer :: i,j, igrid,jgrid, iproc,jproc, myi,myj, p Inavigating variables
integer :: numroc ! blacs routine
integer :: info ! scalapack return value
integer :: open_status, close_status
integer, dimension(9) :: ides_a, ides_b, ides_c ! scalapack array desc
real*8, dimension(:,:), allocatable :: myA,myB,myC ! local matrices
prow = 2 ! number of process rows
pcol = 2 ! number of process columns
mb = 6 ! number of columns in block
nb = 6 ! number of rows in block

=====================]NJTIALIZING GLOBAL MATRICES========================

allocate (A(N,N))
allocate (B(N,N))
allocate (C(N,N))

==================]NITIALIZE PROCESS GRID==========================

write(*,*)'... entering mypdgemm' ; call flush(6)

call blacs_pinfo (me,procs)

write(*,*)' ok -1, me:',me; call flush(6)

call blacs_get (0, 0, icontxt)

write(*,*)' ok -2, me:',me; call flush(6)

write(*,*) 'icontxt:',icontxt, 'me',me; call flush(6)
call blacs_gridinit(icontxt, 'R', prow, pcol)
write(*,*)' ok -3, me:',me; call flush(6)

call blacs_gridinfo(icontxt, prow, pcol, myrow, mycol)
write(*,*)' ok -4, me:',me; call flush(6)

myunit = 10+me

process grid info check

write(myunit,*)"--------

write(myunit,*)"Output for processor ",me," to unit ",myunit

write(myunit,*)"Proc ",me,": myrow, mycol in p-array is ", &
myrow, mycol

flush(myunit)

global structure: matrix A of n rows and n columns

matrix B of n rows and n column
matrix C of n rows and n column

determining size of local array

myArows = numroc(n, nb, myrow, 0, prow)
myAcols = numroc(n, nb, mycol, 0, pcol)
process grid info check

!

! write(myunit,*)"Size of global array is ",n," x ",n

! write(myunit,*)"Size of block 1is ",nb," x ",nb

! write(myunit,*)"Size of local array is ",myArows," x ",myAcols

! flush(myunit)
Modeling of a Graphene Membrane Rupture s UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

Joint Institute for
Computational Sciences

/[=)'

33

if (myunit.eq.10) then !

write(myunit,*)"--- matrix check ----- "
write(myunit,*) 'Matrix', A
do i =1,n

write(myunit,9998) (A(i,j), j=1,n)
end do

|
|
|
|
|
!
! write(myunit,*)
|
|
|
|
|
|

write(myunit,*) 'Matrix', B
do i =1,n
write(myunit,9998) (B(i,j), j=1,n)
end do
write(myunit,*)
end if
| ====================]NITIALIZING LOCAL ARRAYS==========
! write(myunit,*)"--- matrix check all all
allocate (myA(myArows,myAcols))

! write(*,*) "mya: ", allocated(myA)
allocate (myB(myArows,myAcols))

! write(*,*)
allocate(myC(myArows,myAcols))

! write(myunit,*)"--- before MM ----- "
do i=1,n
call g21(i,n,prow,nb,iproc,myi) !
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then

myA(myi,myj) = A(i,j)
myB(myi,myj) = B(i,j)
myC(myi,myj) = C(i,j)

check matrix filling

|
!
! write(myunit,*)"A(",i,",",j.")", &
! " __> myA(Il,my.i,H,I!,
! "on proc(",iproc,","
! write(myunit,*)"B(",i,",",j.")", &
! " __> myB(Il,my.i,H,I!,
! "on proc(",iproc,","
! write(myunit,*)"C(",i,",",j.")", &
! " __> myc(ll,my.i,H,I!,
! "on proc(",iproc,","
end if
end do
end if

end do
! flush(myunit)

! =============PREPARE ARRAY

ides_a(l) =1 ! descriptor type
ides_a(2) = icontxt ! blacs context
ides_a(3) =n ! global number of rows
ides_a(4) =n ! global number of columns
ides_a(5) = nb ! row block size
ides_a(6) = nb ! column block size
ides_a(7) =0 ! initial process row
ides_a(8) =0 ! initial process column
ides_a(9) = myArows ! leading dimension of local
! assigning descriptors to all local matrices

do i=1,9

ides _b(i) = ides_a(i)

ides_c(i) = ides_a(i)

Modeling of a Graphene Membrane Rupture
with DFTB and Improving its Computational Efficiency

DESCRIPTORS FOR SCLAPACK====

CSURE Program 2015

Initialize to have only one process print

see subroutines

myj,")=",myA(myi,myj), &
,jpr‘oc,")"

myj,")=",myB(myi,myj), &
,jpr‘OC,")"

myj,")=",myC(myi,myj), &
,jpr‘oc,")"

array

s UNIVERSITYof OAK
TENNESSEE RIDGE

National Laboratory

Joint Institute for

Computational Sciences

call pdgemm('N','N',n,n,n,1.0d0, myA,1,1,ides_a, &
myB,1,1,ides_b,0.d0, &
myC,1,1,ides _c)

! Print results

34

write(myunit,*)"--- after MM -----
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
C(i,j) = myC(myi,myj)
write(myunit,*)"A(",i,",",j.")", &
to-=> myA(t,myd, Lt my g,)=t myA(my T, my]), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"B(",i,",",j.")", &
Yo-=> myB (", myd,t,t,my L) =", myB(myi,myj), &
"on proc(",iproc,",",jproc,")"
write(myunit,*)"C(",i,",",j.")", &
Yo-=> myCCtLmyd, Lt my g,) =", myClmy i, myj), &
"on proc(",iproc,",",jproc,")"
end if
end do
end if
end do

flush(myunit)

write(myunit,*)
write(myunit,*) 'Matrix', C
do i =1,n
write(myunit,9998) (C(i,j), j=1,n)
end do

deallocate(myA, myB, myC)
deallocate(A, B, (C)
close(l5,iostat=close_status) !close read in
========END BLA(CS==========================
call blacs_gridexit(icontxt)
call blacs_exit(0)
FORMAT(11(:,1X,F8.5))

end subroutine
| A O I |

subroutine MYPDSYEV(n,nb,mb,icontxt,prow,pcol,myrow,mycol,A,W)

implicit none

integer :: n ! Tleading dimension of global matrix--INPUT
real*8, dimension(n,n) :: A ! global matrix to be solved--INPUT
real*8, dimension(n) o W ! eigenvalues--0OUTPUT

real*8, dimension(n,n) :: Z ! eigenvectors--0OUTPUT

integer :: nb,mb ! problem size and block size

integer :: myunit ! Tocal output unit number

integer :: myArows, myAcols ! size of local subset of global array

integer :: i,j, igrid,jgrid, iproc,jproc, myi,myj, p !navigating variables

integer :: numroc ! blacs routine

integer :: me, procs, icontxt, prow, pcol, myrow, mycol ! blacs data
integer :: info | scalapack return value

integer :: 1lwork

integer open_status, close_status ! read in variables

integer, dimension(9) :: ides_a, ides_z ! scalapack array desc

Modeling of a Graphene Membrane Rupture e UNIVERSITYof
with DFTB and Improving its Computational Efficiency "TENNESSEE

KNOXVILLE

CSURE Program 2015

OAK
RIDGE

National Laboratory

CSURE Program 2015

Joint Institute for
Computational Sciences

35

real*8, dimension(:), allocatable ;o work ! work array

real*8, dimension(:,:), allocatable :: myA, myZ ! local matrices
Wr'ite(*,*) '***********IN MYPDSYEV***************'

prow =1 ! number of process rows

pcol =1 ! number of process columns

nb =1 ! leading dimension of block size

lwork = -1 | returns idealized workspace

lwork = -1 ! allows first PDSYEV call to return proper work dimension

determining size of local array
myArows = numroc(n, nb, myrow, 0, prow)
myAcols = numroc(n, nb, mycol, 0, pcol)

=================JNITIALIZING LOCAL ARRAYS==========================

allocate(myA(myArows,myAcols))
allocate(myZ(myArows,myAcols))
allocate(work(1l))
write(myunit,*)"--- before operation -----
do i=1,n
call g21(i,n,prow,nb,iproc,myi) ! see subroutines
if (myrow==iproc) then
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
myA(myi,myj) = A(i,])
myZ(myi,myj) = 0.0d0
check matrix filling

write(myunit,*)"A(",i,",",j.")", &
" __> myA(Il,my.i,I|,I|,myj,I|)=Il,myA(my.i,myj), &
"on proc(",iproc,",",jproc,")"

write(myunit,*)"zZ(¢",i,",",j.")", &
" __> myA(Il,my.i,I|,I|,myj,I|)=|l,myz(my.i,myj), &
"on proc(",iproc,",",jproc,")"

endif
enddo
endif

enddo
flush(myunit)
write(*,*) 'MATRICES DISTRIBUTED'

==========PREPARE ARRAY DESCRIPTORS FOR SCLAPACK==========================

ides_a(l) =1 ! descriptor type
ides_a(2) = icontxt ! blacs context
ides_a(3) =n ! global number of rows
ides_a(4) =n ! global number of columns
ides_a(5) = nb ! row block size
ides_a(6) = nb ! column block size
ides_a(7) =0 ! initial process row
ides_a(8) =0 ! initial process column
ides_a(9) = myArows ! leading dimension of local array
assigning descriptors to all local matrices
do i=1,9

ides_z (i) = ides_a(i)
enddo

write(myunit,*) 'descriptor arrays assigned'

write(myunit,*)'Made it to PDSYEV'

flush(myunit)

First call is to obtain dimension for work

write(*,*) 'First Call'

call pdsyev('V','U',n,mya,1,1,ides_a,w,myZ,1,1,ides_z,work,1lwork,info)
write(myunit,*) 'work is'

write(myunit,9998) work

flush(myunit)

lwork = work(1l)

Modeling of a Graphene Membrane Rupture e UNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency TENNESEEEILLE RIDGE

National Laboratory

JI:SA& CSURE Program 2015
‘(j)(gm;:stsggg;iﬂfosrciences

! write(*,*) 'lwork: ', lwork
deallocate (work)
allocate(work(lwork))
! flush(myunit)
! performing actual calculation
! write(*,*) 'work reallocated’
call pdsyev('V','U',n,mya,1,1,ides_a,w,myZ,1,1,ides_z,work,1lwork,info)
write(*,*) 'made it through second call'
write(myunit,*) 'Completed PDSYEV'
print results
do iproc=1,prow
if (myrow==iproc) then
do jproc=1,pcol
if (mycol==jproc) then
do myi=1,myArows
call 12g(myi,iproc,n,prow,nb,i)
do i=1,n
call g21(i,n,prow,nb,iproc,myi)
if (myrow==iproc) then
1! do myj=1,myAcols
1! call 12g(myj,jproc,n,pcol,nb,j)
do j=1,n
call g21(j,n,pcol,nb,jproc,myj)
if (mycol==jproc) then
A(1,3) = myZ(myi,myj)

! write(myunit,*)"A(",i,",",j,")", &
! "o-=> myA(t,myd, "t my g, ") =" myA(my i, myj), &
! "on proc(",iproc,",",jproc,")"
write(*,*)"z(",i,",",j,")", &
to-=> myA(t,mydL o myd L)=t myZ(myd,myj), &
"on proc(",iproc,",",jproc,")"
endif
enddo
endif
enddo
' end if
I end do
' end if
I end do
flush(myunit)
! write(myunit,*)"--- eigen values ----- "
! write(myunit, 9998) w
| =============DEALLOCATE ALL MATRICES==========================
deallocate(myA, myZ)
! deallocate(A,W,Z)
! close(l5,iostat=close_status) ! close read in
|=============fEND BLA(CS==========================
! call blacs_gridexit(icontxt)
! call blacs_exit(0)
9998 FORMAT(11(:,1X,F8.5))
end subroutine
36 Modeling of a Graphene Membrane Rupture mUNIVERSITYof OAK
with DFTB and Improving its Computational Efficiency "TENNESSEE RIDGE

KNOXVILLE

National Laboratory

