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1 Introduction

Microscopy methods are now universally used in various scientific fields and the
analysis of tons of thousands of micrographs is at the core of modern scientific
laboratory analysis. The recent development of computer vision can facilitate
many of these analyses largely so as to reduce human workload and encourage
new discoveries based on the ability of e�cient mass processing.

Dictionary method requires to categorize multiple atoms in one micrograph into
groups according to a given (or learned) dictionary so that they correspond to
items in the dictionary. In our problem, a dictionary of 125 items is given (see
Figure 1 for part of them). Also given is a micrograph consisting of multiple
atoms. Each atom in the micrograph corresponds to one and only one mode in
the dictionary (a dictionary item). Our task is to identify these correspondences
with an e�cient and accurate algorithm.

An illustration of the problem setting could be found below:

We divide this task into several steps: scale-invariant locating, normalization
and comparison. We first locate the individual atoms within the micrograph,
then normalize possible brightness or contrast disparities between the micro-
graph and the dictionary, and finally compare them so as to give the best match.

In the rest of this literature, we will use ’dictionary’ to refer the whole dictionary
of modes, ’micrograph’ the whole input image, ’dictionary items’ of individual
modes/items in the dictionary, and ’micrograph units’ the individual atoms in
the micrograph.

In part 2, we mainly explain the details of our algorithm; in part 3, the perfor-
mance is displayed and part 4 focuses on possible future work directions we are
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Figure 1: A sample of the given dictionary (part)

Figure 2: An illustration of the problem setting
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Figure 3: The left image is before the transformation while the right one is after
the transformation

aware of.

2 Algorithm

2.1 Scale-Invariant Template Matching of Unit

Motivation. We are given a micrograph as our input data. Each micrograph
consists of multiple units, thus our first task is to locate each unit and we pro-
pose to use a Template Matching approach. Template Matching is a technique
in digital image processing for finding small parts of an image which match a
template image.

From the samples given, it is possible that the dictionary item and micrograph
are of di↵erent scale. However, it is unlikely that the micrograph is rotated or
sheared, making our problem a Scale Invariant Template Matching.

Workflow. Given the characteristics of these micrographs, we assume period-
icity and even distribution of units in the micrograph, we conquer this problem
as follows:
First we will find out explicity one unit with a naive scale approximation and a
brute force search; then with this located unit, we use the periodicity assump-
tion to locate the rest of them. Here come the details :

Eating from the outside.. To find out the first unit as a starter, we will begin
with a process called ’Eating From The Outside’ to get an approximated scale.
We normalize the micrograph according to the dictionary item, and do a simple
transformation to turn the image into black and white. In grayscale images each
pixel is represented as an intensity between 0 and 255, 0 for black and 255 for
white. For both images, we calculate the average pixel intensity for each, and
make that pixel 255 if its intensity is above its average, 0 otherwise. This will
turn the atoms in the image black, kind of a naive segmentation (See Figure 3).
After that we start ’eating’. The idea is that for every pixel, if any of its nearest
8 pixels is black, we also turn it black. Doing this for many rounds we can count
the rounds needed for both the images to be all black (or the sum of the inten-
sity is smaller than a tolerant constant). The ratios of these counts can serve as
an estimate of the scale since the micrograph and the dictionary item are similar.
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Brute Force Search. After getting the approximate scale, we perturb the
scale obtained back and forth and scan in the micrograph with a sliding window
sized the same as the dictionary item, from the upper left corner to the lower
right corner. This enables us to match for a best scale. For example, if we get
rounds of dictionary item : rounds of image = 2 : 1 , we may try sliding
window of size 1

2 ,
1
2.1 ,

1
2.2 ,

1
1.9 or 1

1.8 of the size of the dictionary item. For each
tested scale, choose the closest one to the dictionary. Note that we don’t have
to get an exact match for the dictionary item and the micrograph. Instead, we
just need the right intensity distribution (i.e. atoms matched to atoms), so any
arbitary dictionary item will work for us.

Similarity Measure. To measure how good/simiar a matching is, we use the
normalized correlation as our similarity metric. The formula of the normalized
correlation of dictionary item and the sliding window of the same size is
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� ȳ)

rP
i

(x
i

� x̄)2
P
i

(y
i

� ȳ)2
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where x is the dictionary item, y is the sliding window, x̄, ȳ are the intensity
averages, and i sums across all the pixels.

As shown in the formula, the computation cost of normalized correlation is large.
Let N2 be the size of the dictionary item (also the size of the sliding window),
M2 be the size of the microscopy. For the calculation of the normalized corre-
lation, it requires O(N2) amount of times, but because of the sliding window
approach, we have to perform the calculation (M �N + 1)2 times, so the total
cost will be O(N2(M �N + 1)2). Therefore, to boost up performance, several
techniques are used. Some will be discussed below and some will be discussed
in FUTURE WORK.

Optimization. For the matching process, we will use the upper left quarter as
our microgrpah image, instead of the whole image. Because of the periodicity
of the micrograph, the upper left quarter will be similar to the whole image,
and also our first goal is just to locate one unit, no matter where it is.

Besides, we employ the method of Image Pyramid. In brief, Image Pyramid
is about building several levels of the same image in the following manner :
Start with level 1, for every level N, Level N+1 is the same as Level N but with
half the sizes. Keeps building until some condition satisfied. (See Figure 4). We
keep building levels until one of the dimension of the dictionary item is less than
50. Then we do the matching process on the highest level of the pyramid. Say
we get the rectangle [x1, x2]⇥ [y1, y2] as our initial matching result, we project
it down for one level and get [x0

1, x
0
2] ⇥ [y01, y

0
2]; then we do a matching among

[x0
1 � ✏, x0

2 + ✏]⇥ [y01 � ✏, y02 + ✏] to modify our result. Here ✏ is a small positive
integer, and we choose ✏ = b 1

20 ⇤max(width of level, length of level)c. Simi-
larly, we run all the way down to level 1 and use the final refinement result as
our matching result.
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Figure 4: The idea of Image Pyramid

Also, note that in equation (1), x̄ and
rP

i

(x
i

� x̄)2 will never be changed dur-

ing the sliding of the window. Therefore these two can be pre-calculated to save
computational time.

The usage of integral image to save computational time will be discussed in the
FUTURE WORK.

Locating the other units. Say now we have got [a1, a2]⇥[b1, b2] as our match-
ing result of the first unit, by the periodicity assumption, we get the next unit
to the right by doing a template matching in the rectangle [a2 � ✏, a2 + (a2 �
a1) + ✏] ⇥ [b1 � ✏, b2 + ✏]. Similarly, we repeat for the left, upper, lower units,
until we locate all the units that are intact in the micrograph.

Disadvantage of Eating from the outside. This approach is too naive that
we will abandon this once we have done the integral image approach in the
FUTURE WORK.

2.2 Normalization

Motivation. The given micrograph images, most of the time, are produced
in di↵erent types of experiments and under various lab settings, which leads to
di↵erences in brightness and contrast even within one micrograph image (see
Figure 5). There are some operations and measures that are immune to these
di↵erences with reasons to be explained in a minute, but some are not, for exam-
ple, the Histogram of Oriented Gradients (to be explained later). Therefore, it
is necessary that we normalise the micrograph image according to the dictionary.

Mathematical Interpretation. For the grayscale images that we are study-
ing, colors are represented by integer ‘intensities’. The di↵erences in brightness
and contrast of two grayscale images are essentially the di↵erences in their in-
tensity distributions. Thus, what we need to do is to normalize the intensity
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Figure 5: A Micrograph with Uneven Brightness and Contrast

distribution of the micrograph image to that of the dictionary item.

A typical way to do this is to adjust the intensity distribution of the micrograph
image so that it has the same average and standard deviation with that of the
dictionary item.

For an image of size m ⇥ n pixels, denote by y
i

for i = 1, 2, ...,mn the inten-
sity of the micrograph image at the ith pixel (0  y

i

 255). Let D(µ
m

,�
m

)
and D(µ

d

,�
d

) (µ for average and � for standard deviation) denote the inten-
sity distributions of the micrograph and the dictionary item, respectively and
D(µ0

m

,�0
m

) that of the adjusted micrograph image. (Note: we are using an ar-
bitrary dictionary item from the dictionary here because they have the same
information about brightness and contrast in their intensity distributions).

Then what we have from a distribution-wise normalization is
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so that µ0
m

= µ
d

and �0
m

= �
d

.

It should be noted that if we want to apply operations like cross correlation
on the images, this normalization step can be dropped because such operation
already contains normalization. However, operations like HOG (Histogram of
Oriented Histograms) and MI (Mutual Information) cannot be applied directly.

Implementation. To implement this normalization, we calculate the adjusted
intensity of the micrograph pixel by pixel and assign it to the original image.
We also use the floor function in MATLAB to round each calculated intensity
to integer type.

Performance. In general, our algorithm functions well for this task, mainly
because the dictionary items serve as a good reference. Figure 6 shows the result
of pixel-wise intensity-normalization for the micrograph in Figure 5.
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Figure 6: Normalization result for Figure 5

Figure 7: Interesting Parts

2.3 Comparison

Masking. When it comes to comparison, it is important that we figure out
which part of the micrograph is of principal interest. In this specific problem,
the material scientists are particularly interested in the periphery areas of the
atoms, where reside most of the di↵erences among atoms of di↵erent modes.
The core parts should thus be discarded during comparison because di↵erences
there, if any, are of no relevance. The following mask (Figure 8.) is applied for
Figure 7.

Feature Extraction. Even after masking irrelevant parts, the di↵erences seem
to be rather elusive. It is important to grasp key features in the images: us-
ing wholistic comparison methods like MI (Mutual Information) or normalised
CC (Cross Correlation) may fail to grasp local information while using direct
pixel-wise comparison may be too sensitive to tiny rigid shifts (to be illustrated
in Figure 9.) in the images. Therefore, we use a technique called HOG (His-
togram of Oriented Gradients) to extract local features of the concerned images.

Figure 8: Mask

7



Figure 9: The gray part and the black part are actually the same thing, but a
tiny rigid movement/shift makes it confusing for the computer to realize their
high similarity

HOG essentially looks statistically at the changes in intensity within small
patches of the image. It is thus immune to tiny rigid shifts and comprehen-
sive in grasping local information. The details of HOG and illustrations can be
found below:
1). Divides the input image into square cells of size cellSize;
2). Calculates the image gradient using central di↵erence at each pixel;
3). Assign the gradient at each pixel to a histogram of 2 ⇥ numOrientations
(set by user) orientations to obtain a directed orientation histogram h

d

and a
histogram of undirected orientations h

u

by folding h
d

into two;
4). Calculate a feature vector with 36 features according to UOCTTI, and then
reduce it to a 31-dimension feature vector.

Using HOG makes both the micrograph units and dictionary items much more
di↵erentiable: the normalized cross correlation of two distance dictionary items
can be as high as 0.9928 (after masking). It is now reduced to 0.9262.

Similarity Measure. Now we can apply normalized CC (cross correlation) on
the feature vectors we got.

Cross Correlation =

P
i=mn

i=1 (x
i

� x̄)(y
i

� ȳ)

mn⇥ �
x

�
y

(3)

For each micrograph image unit, calculate its cross correlation with each dictio-
nary item and pick the item with the highest normalized CC as the identified
item.

However, since the di↵erence between micrographs of di↵erent atom modes are
extremely elusive, using normalized CC directly on the feature vector might still
su↵er from ambiguity. Noticing that in this case, the interesting part can actu-
ally be subdivided into four parts, with each having some individual characteris-
tics in direction and shape (see Figure 8.), we can apply the HOG-CC paradigm
on each of these four parts and then combine the results to get a new similar-
ity measure. Let’s denote the new distance by Dist. (distance = 1�similarity)
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Figure 10: A, B, C, D are separated for individual comparisons

Figure 11: A micrograph unit and a very similar dictionary item (not corre-
sponding)

Dist = 100⇥ (1� CC
A

)(1� CC
B

)(1� CC
C

)(1� CC
D

)

(1� CC
A

⇥ CC
B

⇥ CC
C

⇥ CC
D

)
(4)

This newly defined similarity measure largely enlarged the gap between similar
and dissimilar images. For example, the normalized CC between feature vectors
of one micrograph unit and an arbitrary dictionary item in Figure 11 is 0.6057
while that between the same micrograph unit and its corresponding dictionary
item in Figure 12 is 0.6378, showing a really small gap in the distances. Af-
ter using Dist, assuming each part of A,B,C,D has the same feature vector
normalized CC (that is, 0.6057 and 0.6378), we have

Dist
different modes

= 2.09182956 (5)

Dist
same mode

= 1.43625651296 (6)

This is a lot more robust compared to the 0.3622 and 0.3943 distances just using
normalised CC once.

2.4 Another Approach: Grouping

Motivation. After testing our locate-normalise-compare pipeline, we still find
outliers and mistakes in the output we produce here or there. This mainly re-
sults from the intrinsic similarity among dictionary items. Actually, when the
noises have even larger e↵ect than di↵erent modes of atoms on the micrographs,
there is hardly any algorithm that can produce 100% correct answers.

Figure 12: The same micrograph unit and its corresponding dictionary item
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Nevertheless, this problem needs a really low tolerence rate on mistakes because
of the scientific rigorousness required in subsequent studies based on our output.
Thus, we think of compromising our goal to outputing a weaker result: instead
of giving one single match, we propose to give a candidate group that is as small
as possible and we wish to maintain a 100% confidence rate.

K-means Clustering. Among various clustering methods, we picked K-means
algorithm because it is the easiest to implement and it turned out working just
fine for our problem. We believe algorithms like Spectral Clustering and Max-
Spacing will produce similar results as well. The above Dist measure is used
as a pseudo-distance in our K-means clustering and the details of our K-means
methods can be found below:
1). Randomly initialize K centroids at K input data points (in our case, dictio-
nary items);
2). Assign each data point (dictionary item) to its nearest centroid;
3). Recalculate centroids to be the mean of all its assigned data points;
4). Repeat 2) and 3) until converge;

Sampling. K-means Clustering is a randomized algorithm, so we cannot get
deterministic result for grouping. To make our grouping more stable, we use
the technique of sampling :
We repeat K-means Clustering for K times, assumes the size of the dictionary
is S.
Define

X
(n)
ij

8
><

>:

1, if dictionary item i,j are in the same group

in the n-th experiment

0, otherwise

where 1  i, j  S, 1  n  K.

Also define X(n) as a S ⇥ S matrix with X(n)(i, j) = X
(n)
ij

.

Therefore we get a sequence of matrix X(n), 1  n  K.
Let

X =
1

S

SX

n=1

X(n)

Then X(i, j) is the percentage that item i and j are in the same group for
these K experiment. We group item i and j into the same group if X(i, j) �
threshold constant, we choose threshold constant to be 0.8 in our case.

For the grouping result, please see APPENDIX.

Comparison. Now that we have divided the dictionary into K groups, we pro-
ceed to generate a signature for each group. The signature of a group is nothing
special than an average of all its member items. Then it is these signatures
that are used to be compared with the micrographs. With the same methods
discussed in last section, we will pick the optimal group as the identified group
and all its member items the identified candadites.
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Figure 13: The output of original algorithm

3 Performance

3.1 Output of Algorithm

Figure 13 shows the output of our algorithm. Each rectangular stands for a unit
we located in the input micrograph and the small number at their upper-left
corners stand for the ID of dictionary item they are identified with.

On average our algorithm takes 110s to run on a MacBook Air (1.8 GHz Intel
Core i5, 4 GB 1600 MHz DDR3) for a dictionary of size 25 and a microscopy of
size 30 (items).

Our algorithms performs very well in locating the units even when there are
large di↵erences in the scale of the dictionary item and micrograph units. It
also successfully captured the characteristics of the input micrograph which is
that units in the same column belong to the same or similar dictionary items.
However, it also made mistakes. The middle unit of the third column, for ex-
ample, is identified with the 9th dictionary item, which is obviously wrong. We
have tuned the cellSize we use in HOG extraction but that helps little. We
proceed to try exchanging the order of normalization and masking.

3.2 After Adjusting Order of Normalization and Masking

As suggested before, we adjusted the order of normalization and masking be-
cause when normalizing we are assigning the brightness information of one dic-
tionary item to any micrograph unit, including those not corresponding to it.
This might introduce changes in other information of these micrograph units
but they were thought to be negligible.
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Figure 14: The output after exchanging the order of normalization and masking

Figure 14 shows the result after adjusting the order and it does not seem to fix
our problem.

3.3 Output of Grouping Method

As mistakes, even tiny ones, cannot be tolerated in our task, we turn to think
about compromising our goal to outputting a list of candidates instead of one
final answer for each micrograph unit. We call it the Grouping Methods.

Figure 15 shows the result of the Grouping Methods (where the average of each
group is used as signature). This time we do fix the outlier problem but we
also introduced new problem: How can we determine the K in grouping? In
principal, we want as many groups as possible so that each ’candidate list’ ob-
tained would be smaller, but how do we now to which point we can enlarge K?
Especially when we don’t have prior ’right answer’ for the matching.

4 Future Work

4.1 Speeding Up the Matching by Integral Image

Recall (1), P
i
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i

� x̄)(y
i

� ȳ)
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i

� x̄)2
P
i

(y
i
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where x is the dictionary item, y is the sliding window, x̄, ȳ are the intensity
averages, and i sums across all the pixels. x, x̄ can be pre-calculated. Actually,
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Figure 15: The output of Grouping Method
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� ȳ)2 can be obtain by O(1) time after we have pre-calculated the im-

age’s Integral Image.

Denote the intensity of microgrpah at (x, y) by i(x, y), and define
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� ȳ)2 =
X

i

y2
i

� 2ȳ
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Note that the latter term equals to zero. Therefore we have only the termP
i

x
i

(y
i

� ȳ) left. Since we are locating the units, we don’t have to have an

exact match of the units. It su�ces to consider the approximation of the
normalized cross correlation. So we may do the approximation of the nor-
malized cross correlation as follows : Define R
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as a rectangular block, i.e.,
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= 1 on some rectangular region,R
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= 0 otherwise.
If we can approximate the Image of y
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then we can use the technique of Integral Image. For the rectangular blocks
approximation of the Image

yi�ȳ

, one may uses Gradient Descent approach to
get such approximation.

For details of the above method, please refer to [5], [8].

A Remark is that with the above algorithm, the calculation of normalized cross
correlation will be reduced to O(1) time, so the total cost of the template match-
ing will be O(M�N+1)2), provided we have pre-calculated the integral images
of the micrograph image, square of the micrograph image.

4.2 Increasing Speed Through Parallel Computing

For the calculation of the sliding window of normalized cross correlation, (M �
N + 1)2 calculations of the normalized cross correlation are performed. How-
ever, these CC values are independent, therefore we may use parallel computing
method increase the speed. Once are calculation are done, we may find the one
with the maximum value.

4.3 LSH(Locality-Sensitive Hashing).

We also propose to use Locality-Sensitive Hashing to speed up our algorithm
when the dictionary size is large. Currently we compare each micrograph unit
with each dictionary item to query the best match, which consumes O(MN)⇥
O(comparison) time if we have N micrograph units with a dictionary of size
M . LSH can reduce it to O(N) ⇥ O(comparison) by pre-processing the dic-
tionary information and hash them to multiple hashtables. Each time when a
micrograph unit is given, the algorithm hashes this micrograph unit to these
hash tables and only compare it when dictionary items within the same bucket.
By selecting a suitable hash function we can e�ciently bound the number of
HOG-CC comparisons by a constant. The detailed LSH goes like:
(Assume we have micrograph units and dictionary items of size m⇥ n pixels.)
1). Initialise r (usually r < 10) straight lines in the mn dimension Euclidean
Space; these lines will serve as hash tables;
2). Divide these straight lines into small segments of length a; these segments
will serve as di↵erent buckets;
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3). The hashing process is actually projecting each dictionary item onto each
straight line (hash table), and the segment it falls in is the bucket it is hashed
to;
4). Cache these hashing results;
5). Each time when a micrograph unit is input, also hash it to these hash tables;
6). Adopting HOG-CC comparison between this micrograph unit and the dic-
tionary items in the same bucket only guarantees to give the same answer.

Note here are too ways to tune LSH: AND and OR methods.

AND: we can make a relatively larger, which allows multiple dictionary items
to be hashed to the same bucket; then we need to compare the micrograph unit
with the dictionary items that are hashed to the same bucket in each hash
table.

OR: we can make a small enough to ensure that no two dictioanry items are
hashed to the same bucket; then we compare the micrograph with the dictionary
items that appears in the same bucket in any hash table.

Particularly, the OR method guarantees that we at most compare r (constant)
times and thus bound the computing time by O(N)⇥O(comparison).

5 Conclusion

We have established a pipeline to analyze the units in the micrograph. We
proposed a Scale Invariant Template Matching approach to find out the units.
For the comparison part, first we used HOG to extract features in order to
capture the di↵erences. Then we compared the extracted feature vectors to the
dictionary items. Since the di↵erences of the dictionary items are too small, we
divided the items into groups and see which group the unit belonged. FUTURE
WORK can be done to improve the time performance of our algorithm.
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APPENDIX

1 Sample Micrograph

2 Grouping Result
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Group 35

3 MATLAB Code

The code may contain bugs, please contact us if you found any.

3.1 crosco

function output = crosco( image1, image2 )
%image1 = imread(im1);
%image2 = imread(im2);
%image1 = im2double(image1);
%image2 = im2double(image2);
imsize = size(image1);
%assuming that image1 and image2 have the same size

if length(imsize) > 3
return

end

%calculate sd of image1 and image2
%did not divide by n for error minimizing (n will be cancelled)
avg1 = sum(sum(sum(image1)))/numel(image1);
avg2 = sum(sum(sum(image2)))/numel(image2);
sd1 = sqrt(sum(sum(sum((image1−avg1).ˆ2))));
sd2 = sqrt(sum(sum(sum((image2−avg2).ˆ2))));

%calculating crosco
output = sum(sum(sum((image1−avg1).∗(image2−avg2))))/(sd1∗sd2);

end

3.2 compareAndPick

function bestMatch = compareAndPick(dictionary, item)
unitLength = size(item,1);
totalLength = size(dictionary,1);

if mod(totalLength, unitLength) ˜= 0
return

end

bestMatch = 0;
cc = 0;

k = totalLength/unitLength;
for i = 1:k
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%cc new = crosco(mask(item),mask(dictionary(((i−1)∗unitLength+1):i∗
unitLength,:,:)));

cc new = crosco(item,dictionary(((i−1)∗unitLength+1):i∗unitLength,:,:));
if cc new > cc

bestMatch = i;
cc = cc new;

end
end

end

3.3 levelAdjust

%search for x, calculate percentile, search percentile, calculate
function image = levelAdjust(image1, image2)

size1 = numel(image1);
size2 = numel(image2);

rank = 1;
image2rank = zeros(size(image2));
for j = 0:255

for k = 1:size2
if image2(k) == j

image2rank(k) = rank;
rank = rank+1;

end
end

end

done = 0;
for i = 0:255

sum1 = sum(image1(:)==i);
ratio2 = round(sum1∗size2/size1);
done1 = done;
done2 = done + ratio2;
for k = 1:size2

if (image2rank(k)>done1) && (image2rank(k)<=done2)
image2(k) = i;
done = done+1;

end
end

end

image = image2;
end

3.4 hogFeatures

function hog = hogFeatures(cellSize, im)
run(’./vlfeat/toolbox/vl setup’);
%im = imread(image);
im = single(im);
hog = vl hog(im, cellSize);
%imhog = vl hog(’render’, hog, ’verbose’);
%clf; imagesc(imhog); colormap gray;

end
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3.5 mask

function masked = mask(mat)
sizeMat = size(mat);
cutLength = round(sizeMat(2)/4);
masked = [mat(:,(cutLength+1):(cutLength∗2)),mat(:,cutLength∗3+1:end)];

end

3.6 dicMatch

function match = dicMatch(dictionary, microscopy, cellSize)
%dictionary: N∗1 cell of strings
%microscopy: an image
numDic = size(dictionary, 1);
dicSample = imread(char(dictionary(1)));
dicSample2 = im2double(dicSample);
microscopy = imread(microscopy);
microscopy = im2double(microscopy);

[items, itemLength, itemWidth, positions] = FullSILocate(microscopy,
dicSample2);

length = size(items,1);
if mod(length, itemLength) ˜= 0

return
end

dic = []; dicFeatures = [];
for j = 1: numDic

dictmp = imread(char(dictionary(j)));
dictmp = double(dictmp);
dic = [dic; dictmp];
dictmp = mask(dictmp);
hogtmp = hogFeatures(cellSize, dictmp);
dicFeatures = [dicFeatures;hogtmp];

end

%hogLength = size(dicFeatures,1)/size(hogtmp,1);

match = [];
numItem = length/itemLength;
figure;
hAx = axes;
imshow(microscopy, ’Parent’,hAx);
hold on;
for i = 1:numItem

item = items(((i−1)∗itemLength+1):i∗itemLength,:);
item = uint8(item∗255);
item = levelAdjust(dicSample,item);
%item2 = [item2; item];
item = imresize(item, size(dicSample));
itemComp = mask(item);
%itemComp = levelAdjust(mask(dicSample), itemComp);
hogItem = hogFeatures(cellSize, itemComp);
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match = [match;compareAndPick(dicFeatures, hogItem)];
imrect(hAx, [positions(i,2),positions(i,1),itemWidth, itemLength]);
txt = num2str(match(i));
text(positions(i,2)+round(itemWidth/5),positions(i,1)+round(itemLength

/5),txt,’HorizontalAlignment’, ’right’);
end

end

3.7 crosco more output

%this is the function to calculate cross correlation
%the latter two argument is the standard deviation, mean of the image2 (the

dictionary item)
function output = crosco more input(image1, image2,sd2,avg2)

%image1 = imread(im1);
%image2 = imread(im2);
%image1 = im2double(image1);
%image2 = im2double(image2);
%imsize = size(image1);
%assuming that image1 and image2 have the same size

%if length(imsize) > 3
% return

%end

%calculate sd of image1 and image2
%did not divide by n for error minimizing (n will be cancelled)
avg1 = sum(sum(image1))/numel(image1);
sd1 = sqrt(sum(sum((image1−avg1).ˆ2)));

%calculating crosco
output = sum(sum((image1−avg1).∗(image2−avg2)))/(sd1∗sd2∗sqrt(numel(

image2)));
end

3.8 new locate level 1

%this is the function to locate where the best sliding window fits
%it assumes no image pyramid used
function [output coor,cc] = new locate level1(input image,input template,

input template std,input template avg);
%output format is as follows
% p1(row,col) −−−− p2(row,col)
% | |
% | |
% p3(row,col) −−−− p4(row,col)
imsize = size(input image);
templatesize = size(input template);
output coor = zeros(4,2);
cc = 0;
%counter = 0;
for row = 1:imsize(1)−templatesize(1)+1

for col = 1:imsize(2)−templatesize(2)+1
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cc new = crosco more input(input template,input image(row:row+
templatesize(1)−1,col:col+templatesize(2)−1),input template std,
input template avg);

if cc new > cc
cc = cc new;
output coor = [row,col;row,col+templatesize(2)−1;row+templatesize

(1)−1,col;row+templatesize(1)−1,col+templatesize(2)−1];
end
%counter = counter+1;

end
end
%counter;

end

3.9 ConvertCoorPyramid

%This function converts the coordinate between levels of pyramid.
function output = ConvertCoorPyramid(input coor,direction,level size)
%to reduce or expand the coordinate between levels of pyramid
%the default level size is 2
%input is a 4∗2 matrix indicates the 4 pts of the rectangle
% p1(row,col) −−−− p2(row,col)
% | |
% | |
% p3(row,col) −−−− p4(row,col)
%so is output
if exist(’level size’) == false

level size = 2;
end

output = zeros(4,2);
switch direction

case ’expand’
output = floor(level size∗(input coor−[1,1;1,1;1,1;1,1])+[1,1;1,1;1,1;1,1]);

case ’reduce’
output = floor((1/level size)∗(input coor−[1,1;1,1;1,1;1,1])

+[1,1;1,1;1,1;1,1]);
end

end

3.10 new locate level up

%this function implements the image pyramid
function [output coor,cc] = new locate levelup(input image,input template,

iteration,input template std,input template avg)
%output format is as follows
% p1(row,col) −−−− p2(row,col)
% | |
% | |
% p3(row,col) −−−− p4(row,col)
output coor = zeros(4,2);
fluct = 5;
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imsize = size(input image);
py image = impyramid(input image,’reduce’);
py template = impyramid(input template,’reduce’);

if iteration == 1
output coor = new locate level1(py image,py template,input template std,

input template avg);
else

output coor = new locate levelup(py image,py template,iteration−1,
input template std,input template avg);

end
%imshow(py image);pause
%imshow(py template);pause
output coor = ConvertCoorPyramid(output coor,’expand’,2);
%imshow(input image(max(output coor(1,1)−fluct,1):min(output coor(3,1)+fluct,

imsize(1)),max(output coor(1,2)−fluct,1):min(output coor(2,2)+fluct,imsize
(2))));pause

coor add = [max(output coor(1,1)−fluct,1),max(output coor(1,2)−fluct,1);max(
output coor(1,1)−fluct,1),max(output coor(1,2)−fluct,1);max(output coor
(1,1)−fluct,1),max(output coor(1,2)−fluct,1);max(output coor(1,1)−fluct,1),
max(output coor(1,2)−fluct,1);];

[output coor,cc] = new locate level1(input image(max(output coor(1,1)−fluct,1):
min(output coor(3,1)+fluct,imsize(1)),max(output coor(1,2)−fluct,1):min(
output coor(2,2)+fluct,imsize(2))),input template,input template std,
input template avg);

output coor = coor add + output coor;
end

3.11 scale

%this function implements the Eating from Outside
function output = scale(temp in,ref in);
%aims to scale the temp and ref
%works for dim2 only
%should be used with chan vese
%template,reference

%initialization
%temp = imread(temp in);
%ref = imread(ref in);
temp = temp in;
ref = ref in;
size temp = size(temp);
size ref = size(ref);
prescale temp = min(size temp/500);
prescale = min(size ref/250);
temp = imresize(temp,1/prescale temp);
ref = imresize(ref,1/prescale);
size temp = size(temp);
size ref = size(ref);
%check whether RGB or not, somehow rgb2gray doesn’t work
if length(size temp) == 3

temp = temp(:,:,1);
end
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if length(size ref) == 3
ref = ref(:,:,1);

end

%create mask
mask temp = zeros(size temp);
mask temp(temp<mean(mean(temp))) = 0;
mask temp(temp>=mean(mean(temp))) = 1;

mask ref = zeros(size ref);
mask ref(ref<mean(mean(temp))) = 0;
mask ref(ref>=mean(mean(temp))) = 1;

temp = im2double(mask temp);
ref = im2double(mask ref);

%Since the performance is the best when the ref size is about 200∗200, we
%rescale it
%ref = imresize(ref,200∗((1/size ref(1))∗size ref));

%the function of ’eating’ as a time parameter
function output scale test = scale test(input scale test,tol)

output scale test = tol;
tolerance = 10;
while sum(sum(input scale test)) > tolerance

input scale test = conv2(input scale test
,[1/8,1/8,1/8;1/8,0,1/8;1/8,1/8,1/8],’same’);

input scale test(input scale test<1) = 0;
output scale test = output scale test + 1;
%imshow(input scale test);
%pause(0.01);

end
end

%rescale the picture
noise mean = 0;
scale temp = scale test(imresize(temp(1:min(size temp(1),2∗size ref(1)),1:min(

size temp(1),2∗size ref(2))),3),noise mean);
scale ref = scale test(imresize(ref,3),noise mean);
output = (scale ref/scale temp)∗prescale/prescale temp

%ref in = imread(ref in);
%output = imresize(ref in,scale temp/scale ref);
end

3.12 ScaleSearch

function [output,output scale] = ScaleSearch(input image,input template,fluct);
%fluct defines the ranges
%e.g. [1 2]
%then the program searches from fluct(1),fluct(2),....fluct(end) to find
%the suitable scale
size image = size(input image);

13



std template = std2(input template);
mean template = mean2(input template);
compare template = imresize(input template,fluct(1));
size template = size(compare template);
input size = min(size image,max(2∗size template,floor(size image/2)));
iteration = min(floor(min(log(input size)/log(2)−6)),floor(min(log(input size)/log

(2)−5)));
output scale = fluct(1);
[best fit coor,best fit cc] = new locate levelup(input image(1:input size(1),1:

input size(2)),compare template,iteration,std template,mean template);
for trial = 2:length(fluct)

ratio = fluct(trial);
compare template = imresize(input template,ratio);
size template = size(compare template);
input size = min(size image,max(2∗size template,floor(size image/2)));
iteration = min(floor(min(log(input size)/log(2)−6)),floor(min(log(input size)/

log(2)−5)));
[test fit coor,test fit cc] = new locate levelup(input image(1:input size(1),1:

input size(2)),compare template,iteration,std template,mean template);
if test fit cc > best fit cc

best fit cc = test fit cc;
best fit coor = test fit coor;
output scale = fluct(trial);

end
end
output = best fit coor;
end

3.13 SILocate

%this function finds the first unit
function [output,scaling] = SILocate(input image,input template);
input size = min(size(input image),max(2∗size(input template),floor(size(

input image))/2));
estimated = scale(input image(1:input size(1),1:input size(2)),input template);
estimated scale = floor(10∗estimated)/10;
estimated min = estimated scale − 0.2∗(round(estimated scale)+1);
estimated max = estimated scale + 0.3∗(round(estimated scale)+1);
[output,scaling] = ScaleSearch(input image,input template,1./[estimated min:0.1:

estimated max]);
scaling = 1/scaling
end

3.14 FullSILocate

%This function finds units in the micrograph
function [output matrix,length,width,output position,output coor] = FullSILocate(

input image,input template)
size image = size(input image);
size template = size(input template);
%locate the first one
temp coor = SILocate(input image,input template);

%change template size according to the first result
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size template(1) = temp coor(3,1) − temp coor(1,1)+1;
size template(2) = temp coor(2,2) − temp coor(1,2)+1;
input template = imresize(input template,size template);

no col = floor(size image(2)/size template(2));
no row = floor(size image(1)/size template(1));
output coor = zeros(4,2,no col∗no row);

function output position = position(coor,image size,template size)
output position = floor((coor(1,2)−1)/template size(2))+1 + floor((coor(1,1)

−1)/template size(1))∗floor(image size(2)/template size(2));
end

first position = position(temp coor,size image,size template);
output coor(:,:,first position) = temp coor;

%input the scale−modified template and the original image
function output direction coor = direction coor(temp coor,input image,

input template,direction,fluct)
size image = size(input image);
size template = size(input template);
input template std = std2(input template);
input template avg = mean2(input template);
switch direction

case ’left’
row min = max(1,temp coor(1,1)−fluct);
row max = min(size image(1),temp coor(3,1)+fluct);
col min = max(1,temp coor(1,2)−size template(2)−fluct);
col max = min(size image(2),temp coor(2,2)−size template(2)+fluct);
temp subimage = input image(row min:row max,col min:col max);

case ’right’
row min = max(1,temp coor(1,1)−fluct);
row max = min(size image(1),temp coor(3,1)+fluct);
col min = max(1,temp coor(1,2)+size template(2)−fluct);
col max = min(size image(2),temp coor(2,2)+size template(2)+fluct);
temp subimage = input image(row min:row max,col min:col max);

case ’up’
col min = max(1,temp coor(1,2)−fluct);
col max = min(size image(2),temp coor(2,2)+fluct);
row min = max(1,temp coor(1,1)−size template(1)−fluct);
row max = min(size image(1),temp coor(3,1)−size template(1)+fluct);
temp subimage = input image(row min:row max,col min:col max);

case ’down’
col min = max(1,temp coor(1,2)−fluct);
col max = min(size image(2),temp coor(2,2)+fluct);
row min = max(1,temp coor(1,1)+size template(1)−fluct);
row max = min(size image(1),temp coor(3,1)+size template(1)+fluct);
temp subimage = input image(row min:row max,col min:col max);

end
coor add = [row min−1,col min−1;row min−1,col min−1;row min−1,

col min−1;row min−1,col min−1];
output direction coor = coor add + new locate level1(temp subimage,

input template,input template std,input template avg);
end
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%debug
%output coor = direction coor(temp coor,input image,input template,’down’,10);
fluct = 10;
col coor = temp coor;
for col = 1: floor((temp coor(1,2)−1)/size template(2))

col coor = direction coor(col coor,input image,input template,’left’,fluct);
output coor(:,:,position(col coor,size image,size template)) = col coor;

end

col coor = temp coor;
for col = 1: floor((size image(2)−temp coor(2,2))/size template(2))

col coor = direction coor(col coor,input image,input template,’right’,fluct);
output coor(:,:,position(col coor,size image,size template)) = col coor;

end

row matrix = [];
for i = 1:no col∗no row

if output coor(:,:,i) ˜= [0,0;0,0;0,0;0,0]
row matrix = cat(3,row matrix, output coor(:,:,i));
end

end

for row count = 1:size(row matrix,3)
row coor = row matrix(:,:,row count);
for row = 1:floor((row matrix(1,1,row count)−1)/size template(1))

row coor = direction coor(row coor,input image,input template,’up’,fluct);
output coor(:,:,position(row coor,size image,size template)) = row coor;

end

row coor = row matrix(:,:,row count);
for row = 1:floor((size image(1)−row matrix(3,1,row count))/size template(1))

row coor = direction coor(row coor,input image,input template,’down’,
fluct);

output coor(:,:,position(row coor,size image,size template)) = row coor;
end

end

output matrix = [];
for i = 1:no col∗no row

if output coor(:,:,i) ˜= [0,0;0,0;0,0;0,0]
output matrix = cat(1,output matrix, input image(output coor(1,1,i):

output coor(3,1,i),output coor(1,2,i):output coor(2,2,i)));
end

end

length = output coor(3,1,1) − output coor(1,1,1) + 1;
width = output coor(2,2,1) − output coor(1,2,1) + 1;

output position = [];
for i = 1:no col∗no row

if output coor(:,:,i) ˜= [0,0;0,0;0,0;0,0]
output position = cat(1,output position,[output coor(1,1,i),output coor(1,2,i)])

;
end
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end

end

3.15 kmean

function [grouping] = kmeans(images, k, nIter, sizeSet, showresult)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here

images = images(:,:,1);
sizeInput = size(images);
%if ˜exist(showresult)
% showresult = 0;
%end
%randome initialization

sizePoint = sizeInput;
sizePoint(1) = sizePoint(1)/sizeSet;

random pick = randperm(125,k);

centers = zeros(k∗sizePoint(1),sizePoint(2));
for i = 1:k

centers((i−1)∗sizePoint(1)+1:i∗sizePoint(1),:) = images((random pick(i)−1)∗
sizePoint(1)+1:random pick(i)∗sizePoint(1),:);

end

grouping = zeros(1,sizeSet);
for i = 1:nIter

%calculate grouping
for j = 1:sizeSet

dist = 100;
for n = 1:k

testing number = (1−crosco(centers((n−1)∗sizePoint(1)+floor(
sizePoint(1)/2)+1:n∗sizePoint(1),:),images((j−1)∗sizePoint(1)+
floor(sizePoint(1)/2)+1:j∗sizePoint(1),:)))∗(1−crosco(centers((n
−1)∗sizePoint(1)+1:(n−1)∗sizePoint(1)+floor(sizePoint(1)/2),:),
images((j−1)∗sizePoint(1)+1:(j−1)∗sizePoint(1)+floor(sizePoint
(1)/2),:)))∗(1−crosco(centers((n−1)∗sizePoint(1)+1:(n−1)∗
sizePoint(1)+floor(sizePoint(1)/2),:),images((j−1)∗sizePoint(1)
+1:(j−1)∗sizePoint(1)+floor(sizePoint(1)/2),:))∗crosco(centers((n
−1)∗sizePoint(1)+floor(sizePoint(1)/2)+1:n∗sizePoint(1),:),images
((j−1)∗sizePoint(1)+floor(sizePoint(1)/2)+1:j∗sizePoint(1),:)));

if (testing number < dist)
dist = testing number;
group = n;

end
end
grouping(1,j) = group;

end
%reallocate centers
for n = 1:k

totalMat = zeros(sizePoint);
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numPoints = 0;
for j = 1:sizeSet

if (grouping(j) == n)
totalMat = totalMat + images((j−1)∗sizePoint(1)+1:j∗sizePoint

(1),:);
numPoints = numPoints + 1;

end
end
centers((n−1)∗sizePoint(1)+1:n∗sizePoint(1),:) = totalMat./numPoints;

end
grouping = zeros(1,sizeSet);

end

for j = 1:sizeSet
dist = 100;
for n = 1:k

testing number = (1−crosco(centers((n−1)∗sizePoint(1)+floor(
sizePoint(1)/2)+1:n∗sizePoint(1),:),images((j−1)∗sizePoint(1)+
floor(sizePoint(1)/2)+1:j∗sizePoint(1),:)))∗(1−crosco(centers((n
−1)∗sizePoint(1)+1:(n−1)∗sizePoint(1)+floor(sizePoint(1)/2),:),
images((j−1)∗sizePoint(1)+1:(j−1)∗sizePoint(1)+floor(sizePoint
(1)/2),:)))∗(1−crosco(centers((n−1)∗sizePoint(1)+1:(n−1)∗
sizePoint(1)+floor(sizePoint(1)/2),:),images((j−1)∗sizePoint(1)
+1:(j−1)∗sizePoint(1)+floor(sizePoint(1)/2),:))∗crosco(centers((n
−1)∗sizePoint(1)+floor(sizePoint(1)/2)+1:n∗sizePoint(1),:),images
((j−1)∗sizePoint(1)+floor(sizePoint(1)/2)+1:j∗sizePoint(1),:)));

if (testing number < dist)
dist = testing number;
group = n;

end
end
grouping(1,j) = group;

end

if (showresult == 1)
figure;
for n = 1:k

temp = [];
for j = 1:sizeSet

if (grouping(j) == n)
temp = [temp, images((j−1)∗sizePoint(1)+1:j∗sizePoint(1),:)/255,

zeros(sizePoint(1),10)];
end

end
subplot(k,1,n);
imshow(temp);
end

end
end

3.16 kmean sampling

function [grouping out] = sampling kmean(images, k, nIter, sizeSet, noSampling,
threshold,showresult)
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%intialized the matrix to store the grouping
matrix record = zeros(sizeSet,sizeSet,noSampling);

%now is the main dish
for times = 1:noSampling

tic
[grouping] = kmeans(images,k,nIter,sizeSet,0);
for compare = 1:sizeSet

for being compare = compare:sizeSet
if (grouping(compare) == grouping(being compare))

matrix record(compare,being compare,times) = 1;
end

end
end
times
toc

end
matrix record = sum(matrix record,3)/noSampling;
matrix record(matrix record >= threshold) = 1;
matrix record(matrix record < threshold) = 0;

track = zeros(1,sizeSet);
grouping out = zeros(1,sizeSet);
for current = 1:sizeSet

if (track(current) == 0)
%haven’t been checked
for being compare = current:sizeSet

if matrix record(current,being compare ) == 1
grouping out(being compare) = current;
track(being compare) = 1;

end
end

end
end

end
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