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Given an image of microscopy, and a set of dictionary items (of We assume that the elements in a microscopy are evenly and Using Matlab with VLFeat API for HOG generation, we have
different modes of atoms), we need to design a pipeline to identify periodically distributed (as they usually should be) and that the successfully built up a working pipeline and the results are shown
each atom in the microscopy with a mode in the dictionary. atom cores are irrelevant since their shape and size are mode- below.

Invariant.
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i5, 4 GB 1600 MHz DDR3) for a dictionary
of size 25 and a microscopy of size 30

Microscopy image
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DHFSEE @ S Sl EmE Based on current result, we plan to work on three aspects in the
future: looking for a more accurate comparison method;
implementing our algorithm on other platforms, say C/C++/Python;
scaling our algorithm via parallelism.

Dictionary items

Normalization

1. SYM/Neural Network: we plan to improve our comparison by

The workflow of our pipeline consists of mainly three steps (as Machine Learning with a classifier using HOG features;

illustrated below).

intensity distribution of microscopy intensity distribution of dictionary 3 LSH we plan to pr‘eprocess the diCﬁOnary USing LOcality

(not real distribution, figure just for illustration) (not real distribution, figure just for illustration) S t| H h i d . l‘| i b I
Since the sizes of microscopy elements and dictionary items might . | o | €NSItive Hashing to reduce comparing time 1o sub-iinear.
The intensity distribution of microscopy is pixel-wisely normalized

be different, we first normalize the scale and slice the microscopy to be the same with that of the dictionary item
into pieces; then we normalize the brightness and contrast of
microscopy elements with dictionary items before we compare —-
them to gain optimal matches. Comparison
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