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Introduction

= Sudden cardiac arrest is responsible for 325,000 deaths in the US
each year

= Arrhythmias
= Not being identified in time
= Their onset is difficult to predict

= |llustration of wave propagation through cellular automata models

= Two-variable PDEs are computationally expensive and properties are
difficult to adjust

= Control mechanisms
= Feedback control - only effective for smaller tissue
= Constant DI?



Introduction

= |n this study, we will look at:
= The electrophysiological properties of the heart
Cardiac arrhythmias

How a cellular automata model can be used to analyze various
scenarios

The functions used to simulate heart activity
Constant DI control through the use of electrocardiogram (ECG) data



Electrophysiology of the Heart

= Four chambers A

Bundle
of His

= Electrical signal propagates SA Node

through chambers \ P -
= Originates in the sinus node A e e
= As sighal passes through each Right
chamber, the heart contracts Branch
Purkinje

Fibers



Electrophysiology of the Heart

Four states

= SO = Resting

= S1 & S2 = Excited

= S3 = Absolute Refractory
= S4 = Relative Refractory
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Cardiac Arrhythmias

= A disruption in the heart’s normal rhythm

= Variable Heart Rate
= Bradycardia
= Tachycardia

= Reentrant Arrhythmias - tissue is excited repetitively by free waves
= Atrial Fibrillation
= Ventricular Fibrillation

= Non-reentrant Arrhythmias

= Alternans
= AV Heart Block



Cellular Automata

Two-dimensional grid of cells
Each cell has multiple possible states
Predefined rules based on neighbor states

Effective for modeling complex systems
consisting of simple units

Faster than solving PDEs
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Steps taken:

= Analyze Mathematica simulations that run many heart
scenarios

= Recreate simulation in MATLAB

= Generate action potential graphs and cellular automata
models

= Generate action potential duration and ECG data
 Implement constant DI control on scenarios



Two-dimensional cellular automata model

Each square represents a heart cell
Excitation threshold =09V
Refractory threshold = 0.1V

Action potential (V) of a heart cell:

= (0.9, 1] = excited phase

= (0.1, 0.9] = absolute refractory phase
= (0, 0.1] = relative refractory phase

= 0 = resting phase

Aﬁtion potential duration (APD) = time spent in excited and absolute refractory
phases

Diastolic interval (DI) = time spend in relative refractory and resting phases



MATLAB Functions & Scripts

= Simulation = Action Potential Plots
= Stimulation
= Propagation

= Depolarization = ECG Plots
= Evolution

= Cellular Automata

= @, (Transmembrane Potential)
= Parameters

= Restitution

= Action Potential



Scenarios

Normal Conduction Spiral Wave with Scar
= 50x50 model = 50x50 model
= Basic cycle length (BCL) = 75ms = Basic cycle length (BCL) = 75ms

= Time = 2000ms

= Time = 2000ms
= Scar cells at x € [10,15] and y € [5,10]

Normal Conduction with Scar - Excluding (10,5), (10,10), (15,5), and (15,10)
a |
50x50 mode Alternans
= Basic cycle length (BCL) = 75ms = 25x25 model
= Time = 2000ms = Basic cycle length (BCL) = 54ms
- Scar cells at x € [10,15] and y € [15,20] * Time = 2000ms

= Excluding (10,15), (10,20), (15,15), and (15,20)



Other Variables

= Stimulation Times
= Array of t-values at which the pacemaker cells stimulate

= Voltage(x,y,t)
= Action potential of a heart cell at a given time

= APD(X,y)
= Action potential duration of a heart cell

= DI(x,y)
= Diastolic interval of a heart cell

= Duration(x,y)
= Time elapsed since the cell’s last excitation



Restitution

= Defines the relationship between

Restitution Curve
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Action Potential
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f(t) = 001+ e—t/97025
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Signifies what happens to a cell after it
has been stimulated as time progresses

The greater A is, the slower the cell
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Stimulation & Wave Propagation

Stimulation
= |f voltage < 0.1, the cell depolarizes (voltage becomes 1 V)

Wave Propagation
= |f voltage < 0.1, the cell’s neighbors are checked

= |f at least 3 neighbors are excited, the evaluated cell
becomes excited

= Otherwise, the cell evolves

Depolarization

= DI of previous heartbeat is calculated
= APD of next beat is determined

= Voltage becomes 1V

= Duration resets

Black cell is being evaluated
Gray cells are the neighbors being checked

Evolution
= Duration increments
= Voltage changes based on APD and duration



Simulation

= 3x3 group of pacemaker cells stimulate att=0

= At every time step, the propagation function is called at each cell

= |f scar cells exist, they are setto OV

= When t reaches a stimulation time, the pacemaker cells become excited

= Process repeats until the entire interval is covered



Constant DI

= Used as a control mechanism
= Heartbeats are regulated by DI rather than BCL

= Stimulation times are not necessarily equally spaced throughout



Electrocardiogram (ECG)

Diagram used to illustrate
electrical activity in the heart

Measures voltage difference
between two points outside the
tissue

ECG = ®,(B) — ®,(A)
Do(x',y) = [(~WVm) - (V1) dx dy

r=[(c—x)?+ @ —y)?]"3




50

“"““-- T "2l
Ieas - M—-I-
4
e >
T
HH w8
see H
e
H ) )
-
h
c -
$ <
¢ o
3 2! 3 S
e §
-] 2y s 1
ot F HH
°
o
g re 2
m e 299988804
- HH LN
HH HEE
L boee
e
H
=, H
- H :
! H . {9
H
! 1904
T eeees
11 3
o :
o 0 = ) o O o n = w =3 - - - - ~ r 3
" - = ~ ~ ~ ~ — = A = = A - = A =
P RS I I S SRR SR - =
X
o
I "2l
T
1L
il
o
S

0

3

Normal Conduction
0
X
Normal Conduction with Scar

~
HH
HH
" o
o -
-+
H
H
1
T
o
(=] ol o w o T o sl o W o
@\ < < m m ~N ~ - —
A
o
n
m.w
-
.m
c
g £
-~
[*] a 3
5 s
©
c
o x
o
[}
m (=]
~
<] -
] m
o
-
o Al Q Al o ) o ) o sl o Q o C 5 o - o - o -
MR 4 4 m ~ NN M - b’ - - - - ~ .
Iy L

= Normal Conduction
= Normal Conduction
with Scar




Spiral Wave with Scar
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Normal Conduction
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No Control vs Constant DI Control

= No Control = Constant DI
= tstart =t = tstart =1t
» tend = tstart + BCL = tend = tstart + APD(1,1) + DI_target

= DI_target = BCL - APD(1,1)
= APD(1,1) = 56.5466ms
= Normal Conduction with Scar & Spiral Wave with Scar
= BCL=75ms
= DIl _target = 19
= Alternans
= BCL=54ms
= DIl _target =-2



No Control vs Constant DI Control
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Conclusion

= Constant DI effectively controlled alternans in smaller tissue
= Benefits of cellular automata

= Future work
= 3D simulation
GPU implementation
Controlling other heart scenarios
Constant RT control
Other control mechanisms?
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