
Computational Mechanics:
HDF Parallel I/O
Implementation in
Warp3D

Daniel Pledger Carlos Estrada Rocco Febbo
Mentors: Dr. Tim Truster Dr. Kwai Wong

Project Overview
Create a workflow using multiple open source
programs to create more complex geometries for
Warp3D input

Use HDF5 to store output in parallel from
Warp3D to be rendered by visualization software
like Paraview

Description: Open source code for 3D nonlinear
analysis of solids primarily for fatigue and
fracture simulations for materials under static,
dynamic ,and thermal loadings

Purpose: Analyze material mechanics under
stresses to improve designs.

Code: Written in Fortran (Late
1980’s - Current)

Warp3D

Front End

Gmsh Dream3D Voxel2Tet DEIP

Gmesh
Description: Gmsh is a free 3D finite element mesh generator with a
built-in CAD engine

Purpose: Gmsh was used to create model geometries and meshes. Gmsh
comes ready to export model and mesh data to an STL file.

Dream3d
Description: Dream3D allows users to fill solid CAD models with
microstructural grains created from input statistics and properties.

Purpose: Dream3D was used to create initial grain structures in Gmsh models. Dream
3D can input STL files from Gmsh and output a .dream3D file containing grain and
model data.

Voxel2Tet
Description: Voxel2Tet is a code written in C++ that can take voxel (cubic) grain
structures and convert them to tetrahedral mesh with smooth interfaces.

Purpose: Voxel2Tet was used to make Dream3D grain structures smoother and more
realistic. Users can input a .dream3D file, and Voxel2Tet will output an Abaqus .inp file
containing grain and model data.

Voxel2Tet cont.
● Voxel2Tet last updated in 2016.
● Source code modification to read most recent

Dream3D data outputs
● Reading of source code to find required data and

structure for Voxel2Tet to run successfully
● Created a specific dream3d pipeline to create

suitable files for Voxel2Tet input

Discontinuous Element Insertion
Program (DEIP)

Description: Discontinuous Element
Insertion Program is a program written
in MATLAB that inserts zero-thickness
elements in between grain surfaces in
a finite element mesh in two and three
dimensions

Purpose: DEIP was used to place
interface elements between the
Voxel2Tet grain structures. DEIP
comes with a Warp3D input file writer
to output model, grain, and grain
interface data into Warp3D for
simulation.

DEIP cont.
● MATLAB program was written to read the Voxel2Tet abaqus output file.
● Linear tetrahedral elements were converted to quadratic using code written by John

Burkardt, this step was added to the DEIP program.
● Warp3D file writer needed modification to account for quadratic elements and

surface elements

Overview of Front End Workflow
Gmsh

Gmsh is used to create
initial geometry and mesh

Dream3D

Dream3D creates initial
grain structures

Voxel2Tet

Voxel2Tet smoothes and
converts elements to
tetrahedral

DEIP

DEIP inserts interface
elements and writes
Warp3D input file

Back End

Paraview

Description: 3D Object Rendering Software

Purpose: Visualize a 3D object and represent
displacements, temperatures, etc. calculated in
Warp3D

Program Use: Opens .exo file given by Warp3D
or .xmf file used with .h5 file

HDF5
Description: File Type .h5

Purpose: Store files/data by efficient and compact
means using a hierarchical format (similar to
Unix file storage and directories)

Code: Written in C, C++, Fortran

XDMF
Description: File Type .xmf

Purpose: XDMF uses XML to store Light data
and describe the data Model. Either HDF5 or
binary files can be used to store Heavy data.

Light data or “metadata” is used by software
such as Paraview to read and render data
from Heavy data files like .h5

Code: Written in C, C++, Fortran

Measures Taken
● Installed, compiled and ran all required programs

separately

● Wrote program to convert .geo or Patran Format .text
to .h5 and opened with Paraview by giving a .xmf to
represent formatting and attributes

● Learned the structure of Warp3D source and subroutine
calls

● Manipulated and developed Warp3D source code to
write to .h5 from C function called in Fortran

● Developed workflow through various front end
programs to better represent 3D objects resulting in
more accurate simulations

What’s next?

● Compare Warp3D results for models with and without grain structures and grain boundary
interfaces.

● Implement parallelism in Voxel2Tet and DEIP to lower run times.

● Test input workflow on large scale, complex geometries to find real world solutions.

● Persist in achieving more accurately simulated models for optimal data most precise to the
physical world

● Continue developing parallelism in input and output processing

References
1. C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 2009

2. Truster TJ. Discontinuous element insertion algorithm. Advances in Engineering Software,
2015

3. Dodds, R. (2019, July 01), et al. WARP3D-Release 18.1.5 3-D Dynamic Nonlinear Fracture
Analyses of Solids Using Parallel Computers. University of Illinois at Urbana-Champaign

4. Sandstrom, Carl. A Novel Tool for Converting the Voxel Representation of Microstructures
ToSmooth Tetrahedral Meshes. 2016.

5. XDMF: Main Page. (2017, March 13). Retrieved July 31, 2019, from
http://www.xdmf.org/index.php/Main_Page

Questions?

