Computational Mechanics:

HDF Parallel 1/0
Implementation in
Warp3D Th
;1\\ ///“
Daniel Pledger Carlos Estrada Rocco Febbo
Mentors: Dr. Tim Truster =~ Dr. Kwai Wong
NM ¥ OAK
STATE ¥ RIDGE

s National Laboratory

Warp3D

4 »Renderview2 (M|B]0]#)x] & % »Renderview1 [m)B)0] & x|

Description: Open source code for 3D nonlinear
analysis of solids primarily for fatigue and
fracture simulations for materials under static,

956401 T 956401 T dynamic ,and thermal loadings
B B
I so 21 . I 50 2
O O . o
L 8 L 8 Purpose: Analyze material mechanics under
— 0.0e+00 ®

|
o
o
(]
+
o
o
G

stresses to improve designs.

- Code: Written in Fortran (Late
¥y 1980’s - Current)

—3.1e+03 © — 3.1e+03 T

K0} o)

I 2000 8 I 2000 8

=z =

9] ¥ 9]

g Q U Q
8 o e}

— 0.0e+00 O — 0.0e+00 O

Front End

Dream3D Voxel2Tet DEIP

LRI
AN
QRN
N
7o~y
4

I N

i P AN 2 AKX AT o] |
5 VAR \p e
\N\N‘

£l

N

A\,.\N..Vm‘\\ «
NEA S

Gmesh

<
wn
g
O
%
Q
<
wn
(]
=
el
=)
<
70]
O
>
Q
g
o
D]
&n
©
e
]
g
8
<
(]
=
&
Q
+—
e
(D]
2]
=}
72]
<
2
<
72)]
g
&)
Y
72]
=
(=7
R
=
[~

Description: Gmsh is a free 3D finite element mesh generator with a

built-in CAD engine
comes ready to export model and mesh data to an STL file.

Dream3d

Description: Dream3D allows users to fill solid CAD models with
microstructural grains created from input statistics and properties.

Purpose: Dream3D was used to create initial grain structures in Gmsh models. Dream
3D can input STL files from Gmsh and output a .dream3D file containing grain and
model data.

Voxel2Tet

Description: Voxel2Tet is a code written in C++ that can take voxel (cubic) grain
structures and convert them to tetrahedral mesh with smooth interfaces.

Purpose: Voxel2Tet was used to make Dream3D grain structures smoother and more
realistic. Users can input a .dream3D file, and Voxel2Tet will output an Abaqus .inp file
containing grain and model data.

Voxel2Tet cont.

Voxel2Tet last updated in 2016.

Source code modification to read most recent
Dream3D data outputs

Reading of source code to find required data and
structure for Voxel2Tet to run successfully
Created a specific dream3d pipeline to create
suitable files for Voxel2Tet input

Pipeline &
01 ImportSTLFile

02 Create Data Array

03 Create Data Array

04 Combine Attribute Arrays
05 StatsGenerator

06 Initialize Synthetic Volume
07 Establish Shape Types

08 Pack Primary Phases

09 Find Feature Neighbors

10 Match Crystallography

11 Write DREAM.3D Data File

P Start Pipeline

Data Structure =

4 4\ STL-Cube
4 FaceData
FaceNormals
Facelabels
4 StatsGeneratorDataContainer
4 CellEnsembleData
CrystalStructures
PhaseName
PhaseTypes
ShapeTypes
Statistics
4 Hf VoxelDataContainer
4 CellData
EulerAngles
Grainlds
Phases
4 CellEnsembleData
CrystalStructures
NumFeatures
PhaseName
4 Grainlds
AvgQuats
EulerAngles
InterfaceVoxels
NeighborList
NumNeighbors
Phases
SurfaceVoxels
Volumes

Discontinuous Element Insertion
Program (DEIP)

Description: Discontinuous Element
Insertion Program is a program written
in MATLAB that inserts zero-thickness
elements in between grain surfaces in
a finite element mesh in two and three
dimensions

Purpose: DEIP was used to place
interface elements between the
Voxel2Tet grain structures. DEIP
comes with a Warp3D input file writer
to output model, grain, and grain
interface data into Warp3D for
simulation.

DEIP cont.

MATLAB program was written to read the Voxel2Tet abaqus output file.
Linear tetrahedral elements were converted to quadratic using code written by John
Burkardt, this step was added to the DEIP program.

Warp3D file writer needed modification to account for quadratic elements and
surface elements

Overview of Front End Workflow

Gmsh Dream3D Voxel2Tet

DEIP inserts interface
elements and writes

Gmsh is used to create Dream3D creates initial Voxel2Tet smoothes and

initial geometry and mesh grain structures converts elements to

tetrahedral Warp3D input file

Back End

~> Running WARP3D on Linux (gfortran)...
OpenMP + threaded MKL direct/ilterative sparse solver
>> Number of threads for parallel execution: 24

o W ARAAA RRRRRR PPPPPP 33333 poop *x

] [N A ® R P B b b *x

o w A A ® R P I3 30 b *x

W w oA A R R P 30 b **

** W W W AAAAAAA RRRRRR PPPPPP ---- 3333 D D %%

> W oW W A A R RR e 50 b

> W W W A A R RR_ P s E

N A r RR P 33333 boop *x

= Linux 64-bilt (gfortran) -rei- Release: 18.0.0 **

- Code Build Number: 386 e

- Built on: Jul 1 2015 ©9:30:25 e

- University of Illinois @ uU-C-. Clvil & Env Engineering **

- Today: Mon Jul 1 ©9:40:00 2019 o

= NOTICE: Use of Program Implies Agreement with Terms & **

= Conditions Set Forth in File 'license_agreement' **

- Enter the Command 'license’ to Display Text e

- Limits (nodes, elements): none as of 17.9.3 e
< Nasa C(T), W =2 ", a/W = ©.4, B — 6.09"
< CTOA growth wj constant front
< CTOA = 5.6 degrees, Lc = ©.04", Le = ©.02"
< out-of-plane displacements prevented
< 2 elements over half-thickness
< The matertal is Al 2024-T3, a typical aluminum alloy
< used in atrcraft.
< The analysis uses CTOA growth with the constant front algorithm,
< which enforces uniform growth along the crack front. Measurement
< of the CTOA occurs at a distance (Lc) of ©.04” from the crack tip.
< The element size on the crack plane in the directlon of growth (Le)
< = ©.02", thus generally providing two elements between the
< tip and the point at which the CTOA is evaluated. When the CTOA
< at the master node reaches the critical value (5.6 degrees), then
< he crack advances by the distance Lc (in this case, 6.04", or
< roughly two elemen

Paraview

»RenderViewl @@ & % |3 @ % { & »RenderView2 @E]

— 8.0e-02 "

I 0.05

— 1.8e-03

Displacement Magnitude
o
o
(&)}
Displacement Magnitude

rEE

e XXadikd3L02 BEGG

Description: 3D Object Rendering Software

Purpose: Visualize a 3D object and represent

displacements, temperatures, etc. calculated in
Warp3D

Program Use: Opens .exo file given by Warp3D
or .xmf file used with .h5 file

HDF5

Description: File Type .h5

Purpose: Store files/data by efficient and compact
means using a hierarchical format (similar to
Unix file storage and directories)

Code: Written in C, C++, Fortran

metadata

metadata

data set

metadata

data set

metadata

<Topology Type="Hexahedron"
NumberOfElements ="1592">
<DataItem Format="HDF"
Dimensions ="12736">
test39.h5:/Inc
</Dataltem>
</Topology>
<Geometry GeometryType="XYZ">
<DataItem Dimensions="3 2580"
Format="HDF">
test39.h5:/Coor
</Dataltem>

</Geometry>
<Attribute Name="GlobalNodeId" AttributeType="Scalar"s>
<DataItem Dimensions="2580"

Format="HDF">
test39.h5: /GNID
</Dataltem>
</Attribute>
<Attribute Name="Displacement" AttributeType="Vvector"s
<DataItem Dimensions="3 2580"
Format="HDF">
test39.h5: /U
</DatalItem>
</Attribute>

Measures Taken

Installed, compiled and ran all required programs
separately

Wrote program to convert .geo or Patran Format .text
to .h5 and opened with Paraview by giving a .xmf to
represent formatting and attributes

Learned the structure of Warp3D source and subroutine
calls

Manipulated and developed Warp3D source code to
write to .h5 from C function called in Fortran

Developed workflow through various front end
programs to better represent 3D objects resulting in
more accurate simulations

— 1.2e+02
— 100

Jf" . l 50

— 0.0e+00

GlobalNodeld

% »Renderviewz (0|80 8] # »Renderviews (m)B]o]8)x]

— 1.2e+02
= 100

i.

— 0.0e+00

GlobalNodeld

What’s next?

e Compare Warp3D results for models with and without grain structures and grain boundary
interfaces.

e [mplement parallelism in Voxel2Tet and DEIP to lower run times.
e Test input workflow on large scale, complex geometries to find real world solutions.

e Persist in achieving more accurately simulated models for optimal data most precise to the
physical world

e Continue developing parallelism in input and output processing

References

1. C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 2009

2. Truster TJ. Discontinuous element insertion algorithm. Advances in Engineering Software,
2015

3. Dodds, R. (2019, July 01), et al. WARP3D-Release 18.1.5 3-D Dynamic Nonlinear Fracture
Analyses of Solids Using Parallel Computers. University of lllinois at Urbana-Champaign

4. Sandstrom, Carl. A Novel Tool for Converting the Voxel Representation of Microstructures
ToSmooth Tetrahedral Meshes. 2016.

5. XDMF: Main Page. (2017, March 13). Retrieved July 31, 2019, from
http://www.xdmf.org/index.php/Main_Page

Questions?

