
Accelerating 3D FFT
with Half-Precision
Floating Point
Hardware on GPU

Students: Yanming Kang (HKUST) and Tullia Glaeser (Tulane)
Mentors: Ed D’Azevedo (ORNL), Stan Tomov (ICL, UTK), & Kwai Wong (UTK, JICS)

Research Goal

● Previous project: 1D & 2D FFT using radix 4
● OUR goal --

○ Accelerate
○ Larger inputs
○ 3D algorithm
○ radix 2 & radix 8

● * Using CUBLAS 10.0 and CUTLASS template library

● Tensor: “a mathematical object analogous to but more general than a vector, represented

by an array of components that are functions of the coordinates of a space” -- large dense

matrix

● NVIDIA Volta microarchitecture ft. specialized computing units, Tensor Cores
● tensore core support → mixed precision -- matrix multiplication operations done w/

half-precision input data (FP16)-- the rest FFT done on single precision data (FP32)

● FP16 arithmetic enables Volta Tensor Cores which offer 125 TFlops of

computational throughput on generalized matrix-matrix multiplications (GEMMs)

and convolutions, an 8X increase over FP32
● Matrix entries multiplied in neural networks are small w/ respect to value of prev. Iter. →

can use half precision, result is still small in val. → result accumulated to other much

larger val., in single precision to avoid precision loss

● Deep neural network training = tolerant to precision loss up to certain degree

Mixed Precision & Tensor Cores

https://devblogs.nvidia.com/inside-volta/

Discrete Fourier Transform (DFT)
 & Fast Fourier Transform (FFT)

● DFT [O(N2)]: for num. computations in digital signal processing (incl fast convolution,
spectrum analysis)
○ N discrete time series signals →(into) N discrete frequency components (amplitude

+ phase)
○ In matrix form: X(k) = F

N
x, F

N
= e-2𝛑ikl/N

● FFT [O(NlogN)]: Fast algorithm for DFT
○ widely used num. algorithm
○ plays vital role in many scientific and engineering applications

i. image processing
ii. speech recognition

iii. data analysis
iv. large scale simulations

○ Maj. time in large comp. apps
○ To keep improving performance/time -- implement it on GPU

The FFT (DIT, radix-n1)
The Cooley-Tukey Fast Fourier Transform
computes the DFT with only O(N log N)
operations. Cooley–Tukey algorithms
recursively re-express a DFT of a composite size
N = N

1
N

2
 by doing the following:

1. Perform N
1

 DFTs of size N
2

.

2. Multiply by complex roots of unity (often
called the twiddle factors) {W

N
[k,l] = e-2𝛑ikl/N}.

3. Perform N
2

 DFTs of size N
1

.

Different radixes/algorithms
● N

1
 = radix → decimation in time (DIT, Cooley-Tukey)

● N
2

 = radix → decimation in frequency (DIF, Sande-Tukey)
● Radix 4 -- N=4v, input sequence=x(4n), x(4n+1), x(4n+2), x(4n+3), n=0,1,...,N/4-1

○ DFT matrix F
4

 = exactly representable in FP16, w/o loss of precision
■ F

Nreal
[l,k] = cos(2𝜋kl/N) N=4

■ F
Nimag

[l,k] = -sin(2𝜋kl/N)

■ F
4real

 = [1 1 1 1
 1 0 -1 0
 1 -1 1 -1
 1 0 -1 0]

■ F
4imag

 = [0 0 0 0
 0 1 0 -1
 0 0 0 0
 0 1 0 -1]

○ Ideal -- tensor cores built to perform 4x4 matrix-matrix-mult

Radix 4

Different radixes/algorithms
● Radix 8 -- N=8v

○ DFT matrix F
8

-- use previous equations w/ N=8
■ F

Nreal
[l,k] = cos(2𝜋kl/N)

■ F
Nimag

[l,k] = -sin(2𝜋kl/N)
■ → have rads (rad(2)/2, etc) → not exactly representable in FP16, larger error
■ Good for tensor cores too (4x4 matrix-matrix-mult)

● Radix 2 -- N=2v

○ DFT matrix F
2

 = exactly representable in FP16 (w/ no complex part)

○ F
2

[l,k] = [1 1
 1 -1]

○ Problem w/ tensor cores (4x4 matrix-matrix-mult) -- trick

Radix-2 Implementation (trick)

cannot be done directlyMultiplication with

due to the restriction of nvcuda::wmma API.

Must construct 4-by-4 matrix to use tensor cores.

Implementing 1D, 2D, & 3D FFT (in radix 4)

● 1D FFT of x (described previously):
a. x = 1D array (size = n * batch), B (4 x N/4) matrices or 1 (4 x N/4 x B) tensor (B = # of

batches)
b. Find DFT of each of those matrices
c. Multiply by twiddle factor (W = e-2ⲡikn/N)

● 2D FFT:
a. x = (m x n x batch)
b. Reshape x to be 1D array [m*n*batch, 1, 1]
c. Call 1D FFT on it
d. Transpose & do 1D FFT in other direction

● 3D (breakdown shown in pic):
a. Take 1D FFT in each direction OR
b. Take 2D FFT in 2 directions & 1D in last dir.

Radix 4
3D

FFT(X,k,n*m*B)

CUDA background

There are multiple layers of abstraction:

● Divides work into multiple threads (a kernel)

● threads are organized in thread blocks

● A thread block is executed by a Streaming Multiprocessor (SM)

Inside the SM, threads are launched in groups of 32 called warps.

Tensor Cores on V100

 Tesla V100 with 84 SMs

Tensor Cores on V100

Each Tensor Core can do two half precision 4-by-4-by-4 matrix
multiplications per clock cycle. -- 8x throughput than single
precision

Programmers can access Tensor Cores via the Warp-Level Matrix
Multiply-Accumulate (nvcuda::wmma) API

// Load the inputs
wmma::load_matrix_sync(a_frag, a + aRow + aCol * lda, lda);
wmma::load_matrix_sync(b_frag, b + bRow + bCol * ldb, ldb);
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);

CUTLASS (CUDA Templates for Linear
Algebra Subroutines)

The threadblock's OutputTile is partitioned among the warps, and each computes a warp-level matrix product.

CUTLASS (CUDA Templates for Linear
Algebra Subroutines)

Why use templates

● Generic programming -- larger design space.

● Collect compile-time constants (e.g. matrix dimensions, precision) to speedup kernels.

○ Static array allocation

○ Loop unrolling

○ Function inlining

○ Constant folding

● Faster than cuBlas

Dynamic Splitting Algorithm (radix-4)

nvcuda::wmma requires A and B to be half precision when doing gemm C += A * B.

We need to split the input.

Scales are computed dynamically:

● scale1 = max(abs(X))

● X_16hi = (half) X_32 / scale1

● tmp = scale1 * (flaot)(half) X_16hi

● scale2 = max(abs(tmp))

● X_16lo = (half) tmp / scale2

1D results

Radix 4

Radix 2

Radix 8

2D Results

Radix 4

Radix 2

Radix 8

3D Results

the radix 8 algorithm is the fastest but also
has the largest error.

The reason is that the DFT matrix F_8
cannot be represented in fp16 with no
error. The deeper the recursion goes, the
larger the total error will be.

Time
comparison

radix 8 = fastest

Error
comparison

radix 8 = largest
error -- still small

NVIDIA Visual Profiler Analysis of Radix-4

1D, N*batch = 1,048,576 cutlass gemm 45.4%
splitting kernel 20.3%

combining kernel 12.3%
transpose kernel 8.1%

2D, N*M*batch = 67,108,864

cutlass gemm 54.7%
transpose kernel 10.7%

splitting kernel 9.8%
combining kernel 7.9%

3D, K*N*M*batch =
67,108,864

In the Future

● Split-radix algorithm, combining 2+ different radices. eg. combine radix-4 and radix-8

algorithms

● Manipulate the code / use different memory allocation tricks → to take larger input sizes

● Hide memory latency by overlapping FFT and memcpy (H2D, D2H), by splitting batch size and

using multiple streams.

● Provide support to inputs of composite sizes (now only powers of 2, 4, 8).

● Integer approximation of F_8

References

● “Fast Fourier Transform (FFT).” CMLAB, CMLaboratory,
www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

● Markidis, Stefano, et al. NVIDIA Tensor Core Programmability, Performance & Precision. pp. 1–12,

NVIDIA Tensor Core Programmability, Performance & Precision

● Sorna, Anumeena, et al. Accelerating the Fast Fourier Transform Using Mixed Precision on Tensor Core
Hardware. National Science Foundation (NSF), 2018, Accelerating the Fast Fourier Transform Using
Mixed Precision on Tensor Core Hardware,
www.jics.utk.edu/files/images/recsem-reu/2018/fft/Report.pdf

● VanderPlas, Jake. “Understanding the FFT Algorithm.” Pythonic Perambulations, 28 Aug. 2013,

jakevdp.github.io/blog/2013/08/28/understanding-the-fft/

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html
http://www.jics.utk.edu/files/images/recsem-reu/2018/fft/Report.pdf

