Medical Image Processing with Deep Learning:
Mammogram Classification and Automatic Lesion
Detection

Yijie Jin
City University of Hong Kong

Yifan Zheng
The Chinese University of Hong Kong
ethanzhengyf@gmail.com

August 2, 2019

Abstract

Breast cancer is the most common cancer for women in the world [1]. Deep
learning has been a tremendous success in computer vision and also has some
applications in medical imaging. We trained and evaluated several convolutional
neural networks for mammogram classification and tumor detection. We used
the MIAS database which contains 322 mammograms. Before the training, we
performed data augmentation including cropping, rotating and flipping, followed
by discarding part of images without significant information according to several
thresholds. We modified the VGG16 and SSD algorithms to fit our dataset, and
obtained mAP of 0.842 in tumor detection. In addition, some trials of chang-
ing hyperparameters and model structure are made to accelerate the training
process. Our implementation is available at: https://bitbucket.org/EDKLW/
medical-images-2019-a/

1 Introduction

1.1 Background

Approximately one eighth of women in the U.S. will develop breast cancer during their
lifetimes. The mortality of breast cancer largely depends on whether the lesion could

mailto:yijiejin3-c@my.cityu.edu.hk
mailto: ethanzhengyf@gmail.com
https://bitbucket.org/EDKLW/medical-images-2019-a/
https://bitbucket.org/EDKLW/medical-images-2019-a/

be detected at an early stage. Mammography is the process of using low-energy X-rays
to examine human breast for diagnosis and screening. We need well-trained radiologists
to examine the CT images traditionally, which is costly and time-consuming. Adopt-
ing computer aided detection system can accelerate the diagnosing process as well as
enhancing the diagnosis accuracy.

Deep learning has been a tremendous success in image processing and has many ap-
plications such as image reconstruction, object detection etc. As the performance of
deep neural network is reaching or even surpassing human performance, it provides
possibilities to apply it to medical imaging area.

1.2 Objectives

1. Classify the mammograms into 3 categories, normal, benign and malignant.

2. Automatically detect the tumorous lesion without prior information of the pres-
ence of a cancerous lesion.

1.3 Related Work

Computer aid diagnosis has been a popular research area in recent years with the
development of computing power and application of machine learning algorithms. We
reviewed some work done by other researchers. P Xi. et.al. [2] adopted VGGNet for
classification and ResNet for localizing abnormalities. N Wu. et. al. [3] applied ResNet-
22 for lesion detection and they also build a model which combines the prediction of
neural network and interpretations by radiologists.

2 Data

Dataset In the study of mammogram classification, a lot of researchers use their own
databases. However, due to some privacy reasons, most databases for mammograms
are not public. In our study, we applied our algorithm on the benchmark database,
Mammographic Image Analysis Society (MIAS) database. The database comprises
322 images with labels marked by radiologists. Each image has the information of its
categories (normal, benign or malignant), the coordinates of the tumor center and the
radius of the tumor.

Preprocessing Although all of the images include a feature-wise label, some of the
cancerous cases have no information of the tumor center and tumor radius. Besides,
several images has more than one tumor in them, which brings difficulty to label them.

Hence, these images were discarded primarily. The remaining images include 209 nor-
mal, 56 benign and 46 malignant cases.

Data Augmentation As the database has only around 300 images, which is far from
enough for training a neural network. It’s essential to apply some data augmentation
techniques to increase the number of images before training. We've rotated the images
by 90, 180 and 270 degrees respectively and flipped them vertically afterwards. After
this process, we could get 8 images out of 1.

EHad

(a) Original) Rotated by 90° (c) Rotated by 180° (d) Rotated by 270°

Figure 1: Data Augmentation: Rotation

o>

(a) Original b) Flipped

Figure 2: Data Augmentation: Flip

Image Cropping The original size of the images is 1024 x 1024, which is too large
for the neural network to learn features. We cropped the images into small patches
(128 x 128 and 256 x 256, respectively) and sampled several times from the original
images. After the pre-processing procedure, each image could generate 225 patches if
they are cropped into 128 x 128 pixels.

Since some tumors have radius larger than 128 pixels, the tumors could be separated
into different patches and would be hard for the neural network to capture the features
for tumor edges. Based on the average radius of the cancerous tissue, we cropped the
images to 256 x 256 pixels with tumor center located at the image patch center.

Data Cleansing Most mammograms have black background, which could be mis-
leading for the neural network. Hence, it’s crucial to remove the black background. We
set the numerical range of pixel and discarded the patches with more than 20

3 Methods

Deep neural network has made a tremendous success in image processing area, including
image classification, object detection etc. The performance of neural network surpasses
traditional mathematical approaches in image processing. In our study, we applied
VGG16 for mammograms classification and SSD for automatic lesion detection.

3.1 Classification

Network Architecture We built a binary classifier with VGG16 and Convolutional
Neural Network Improvement for Breast Cancer Classification (CNNI-BCC), respec-
tively.

CNNI-BCC CNNI-BCC is a 30-layer convolutional neural network specialized at
learning features in mammograms proposed by F. F. Ting et.al [4]. It is modified based
on VGG16. It has 28 convolutional layers, 1 pooling layer and 1 fully connected layer.
Instead of using normal 2-dimensional convolutional layer, depthwise separable convo-
lution layer is adopted to reduce the number of parameters needed to train. Average
pooling operation is used in the pooling layer and a dense layer is appended at the end.

Input Convolution Pooling Fully Connected Qutput

Figure 3: CNNI-BCC Architecture

VGG16 VGGI16 is a 16-layer convolutional neural network proposed by K. Simonyan
and A. Zisserman which has shown remarkable performance in image classification and
been widely used. [9] It contains 5 blocks. The first two blocks have two convolutional
layers followed by a max-pooling layer and the last three blocks consist of three con-
volutional layers followed by a max-pooling layer. After each convolutional layer, a
rectified linear unit (ReLU) is appended as activation function. Two fully-connected
layer are concatenated with the convolutional blocks for classification.

224 x 224 x3 224 x224x64

112 x 112 x 128

56|x 56 x 256

08 x 28 x 512 Tx7x512
X X
i 114 x 14 % 512 1x1x4096 1x 1 x 1000

=7 convolution+RelU
I max pooling
fully nected+RelLU
softmax

Figure 4: VGG16 Architecture

The original input images for VGG16 have spatial dimension of 224 x 224 x 3 (depth x
width x channel). In our case, the input image dimension is changed to 128 x 128 x 1
as we have the cropped mammograms in grayscale. Other hyperparameters such as
number of filters remain the same as the standard set utilised in the original paper.

3.2 Object Detection

Single Shot Multibox Detector (SSD) SSD is one of the most popular object
detection algorithms due to its ease of implementation and good accuracy. We applied
SSD on our preprocessed data to see how it works on tumor detection. Below is the
general structure of SSD, followed by the table illustrating the modified layers we used
in our tests. In the front part of SSD model, several convolutional layers and max
pooling layers are used to generate feature maps of different scales to detect objects
of various sizes. In the source code, there are SSD models suitable for 300 x 300 and
512 x 512 pictures. When we performed the test, a portion of layers were changed to fit
our 256 x 256 images. The latter section of SSD model are layers to compute multiple
classes confidences and learn the localization detection, which remain unchanged.

Implementation We implemented our models using Python with Keras based on

Tensorflow backend. Our programs were tested on PSC bridges with a 8G memory
GPU.

J’ VGG16 (tested) |

Base network for classification

|
‘\, 6-layer CNN (future) ‘

Multi-scale feature maps

----To allow detections at multiple scales

Extra layers Convolutional predictors for detection

----To compute multiple classes confidences

Default boxes and aspect ratios

----To learn the localization detection

Figure 5: SSD Architecture

4 Experiments

4.1 Classification

We have conducted several experiments for mammogram classification with VGG16
and CNNI-BCC, respectively. In all the experiments, the validation set is split from
the last 10% of the training set and the ratio between the training set (including the
validation set) and the test set is 9:1.

CNNI-BCC Although CNNI-BCC is a 30-layer convolutional neural network, we
only tested part of it due to the restriction of computational resources. Only the first
4 convolutional layers and the fully connected layer at the end were employed. The
model was trained with 1269 image patches for 10 epochs with batch size of 20 and
tested with 157 image patches. We set a constant learning rate of 0.002 and used mean
squared error as loss function and stochastic gradient descent as optimizer.

Layer Type Filters Size Strides Output

Conv2D 64 (3, 3) (1, 1)
Conv2D 64 (3, 3) (1, 1)

MaxPooling2D (2, 2) (2, 2) (128, 128)
Conv2D 128 (3, 3) (1, 1)
Conv2D 128 (3, 3) (1, 1)

MaxPooling2D (2, 2) (2, 2) (64, 64)
Conv2D 256 (3, 3) (1, 1)
Conv2D 256 (3, 3) (1, 1)
Conv2D 256 (3, 3) (1, 1)

MaxPooling2D (2, 2) (2, 2) (32, 32)
Conv2D 512 (3, 3) (1, 1)
Conv2D 512 (3, 3) (1, 1)
Conv2D 012 (3, 3) (1, 1)

MaxPooling2D (2, 2) (2, 2) (16, 16)
Conv2D 512 (3, 3) (1, 1)
Conv2D 012 (3, 3) (1, 1)
Conv2D 012 (3, 3) (1, 1)

MaxPooling2D (3,3) (1,1)
Conv2D 1024 (3, 3) (1, 1)
Conv2D 1024 (1, 1) (1, 1)
Conv2D 256 (1, 1) (1, 1)
Conv2D 012 (3, 3) (2, 2) (8, 8)
Conv2D 128 (1, 1) (1, 1)
Conv2D 256 (3, 3) (2, 2) (4, 4)
Conv2D 128 (1, 1) (1, 1)
Conv2D 256 (3, 3) (1, 1) (2, 2)
Conv2D 128 (1, 1) (1, 1)
Conv2D 256 (2, 2) (1, 1) (1, 1)

Figure 6: Structure of SSD256 model used (only the part extracting feature maps)

0.1850

—— Train accuracy T |
—— Train loss

0.734 0.1825 4

0.72 1 0.1800 4

0.1775 4

0.1750 1

Train accuracy
train loss

0.1725 4

0.1700 4

0.1675

0.67 T T T T T T T T 0.1650
1

Epoch Epoch

(a) Accuracy (b) Loss

Figure 7: Results of training 6-layer CNNI-BCC with 1269 image patches for 10 epochs

The training loss and accuracy are as above. The loss decreases a little during the
training process and the accuracy is around 70% at the end. The accuracy on the test
set is 73.24%.

However, as normal cases comprise approximately of the total training set, the model is
prone to learn more features of normal cases and thus make more predictions of normal,
which inflates the accuracy. Consequently, we balanced the number of images for three
classes in later experiments.

VGG16 Though CNNI-BCC has fewer parameters to train due to the replacement
of Conv2D layer with depthwise convolutional layer, it sacrificed the accuracy. Hence,
we employed a classical CNN (VGG16) to resolve our problem. Instead of categorizing
the images into three classes, we tried with two classes (normal and abnormal) first.
The image patches are shuffled before being fed into the neural network. We used 2520
image patches to train for 80 epochs.

Model Accuracy Model Loss
1 06

p— — loss

09 —— val_acc ——val_loss

B 05
08
o7 04
06
g os . 03

2 o4
03

0.2 01

01

0 0

SEAL PR PEREPASR RIS RSSO YIS PR Y PR D IE LR PRI PP OR

Epoch Epoch

(a) Training and validation accuracy (b) Training and validation Loss

Figure 8: Results of training VGG16 with 2520 image patches for 80 epochs

As demonstrated above, the training accuracy reaches 89.40% at 76th epoch. However,

the validation accuracy fluctuates at around 65% which indicates that the model is
overfitting and has a poor performance of predicting images it has not encountered.

4.2 Automatic Lesion Detection

Metrics mAP (mean Average Precision) is a popular metric in measuring the accu-
racy of object detectors like Faster R-CNN, SSD, etc. [5] The computation is com-
plicated and I will illustrate it below. But before that, we will do a brief recap on
precision, recall, and IoU first.

Precision and Recall Precision measures how accurate the predictions are.
Recall measures how good you find all the positives.
Here are their mathematical definitions:

Procisi TP
recision = ———
TP+FP
TP
l=——
Reca TPLFN

where TP = True Positive, FP = False Positive, FN = False Negative.

In our case of testing for cancer:

TP
Precision —
FEOSION = R otal Positive Results Shown by Model
TP
Recall =

Total Cancer Cases in Ground Truth

IoU (Intersection over Union) IoU measures the overlap between 2 bound-
aries: our predicted boundary and the ground truth (the real object boundary). In real
application, we predefine an IoU threshold (0.5 in our code) in classifying whether the
prediction is a true positive or a false positive.

mAP is the average of AP (Average Precision) among all classes. To compute AP,
Precision-recall curve needs to be drawn first. We collect all the predictions made
for tumors in all the images and rank it in descending order according to the predicted
confidence level. Then we determine the correctness of the predictions by loU. As we go
down the prediction ranking, recall values increase. Meanwhile, precision has a zigzag
pattern — it goes down with false positives and goes up again with true positives. Then
we can plot the precision against the recall value to obtain the Precision-recall curve.

08

0.8

Precision
o
p

0.6
0.5

0.4
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Figure 9: Precision-Recall Curve

The general definition for the Average Precision (AP) is finding the area under the
precision-recall curve above.

AP — /0 ()

But when calculating AP in the objection detection, we often smooth out the zigzag
pattern first. Graphically, at each recall level, we replace each precision value with the
maximum precision value to the right of that recall level.

0.9

0.8

0.7

Precision

—P
0.6 max precision to the right
L
0.5
0.4
0.2 03 0.4 05 06 0.7 0.8 05 1

Recall

Figure 10: Smoothed Precision-Recall Curve

To compute AP, first, we divide the recall value from 0 to 1.0 uniformly — into 20 points
when we evaluated our model. Next, we compute the average of maximum precision
value for these 20 recall values. Here are the more precise mathematical definitions.

10

1
AP = % Z Dinterp (T)

re{0.0,...,1.0}

where

pinte'rp(r) = mafp(f)
r=>r

All in all, mAP is a number between 0 and 1. The closer mAP evaluated from the
model is to 1, the better performance the model has.

ExperimentA - Best Results We ran SSD algorithm on the tumorcenter dataset,
which contains 600 pictures in training set, 100 in validation set, and 116 in test set.
We set the batch size to be 100, steps per epoch to be 60. So in each epoch, all pictures
were gone through for 10 times, which can save time compared with running 10 epochs
and going through all pictures for once in each epoch, since in that case lot of time will
be used to comparing the performance from last epoch and saving model. We ran the
training process for 110 epochs and each epoch cost around 760s. Below is the chart
illustrating the trend of loss decline. It can be seen that the model converges quit slow,
after 110 epochs the validation loss achieves 3.14813, while after 50 epochs the number
is 5.06561.

Training Records

SSD 256

loss

val_loss

0 10 20 30 40 50 60 70 8 90 100
epoch

Figure 11: Training Records of SSD-256 Model

The mAP of the model trained for 110 epochs is 0.842 (0.839 AP for benign cases and
0.846 AP for malignant cases), which is similar to the results from the original SSD
paper. In the paper, SSD 512 x 512 and 300 x 300 models were trained and tested on
PASCAL VOC2007 and VOC2012 datasets, which contain around 20 classes of objects
to be detected and each class is consist of approximately 1000 images. Therefore, our
result shows that SSD algorithm also suits tumor detection. And it is expected that
with more mammogram data, better results will be achieved.

11

Benign, AP: 0.839 Malignant, AP: 0.846

104
LL"[0.9 1

2
)

2 o o °
a I & &
° ° °
S 1] &

precision
e
&
precision
s
&

0.4+
0.4+

0.1+

0.04 —

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 09 10 0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 10
recall recall

Figure 12: Precision-Recall Curve of SSD-256 Model on Tumor-centered Test Set

Below are some prediction examples of the model. The first two pictures are from the
model after 110 epochs of training, while the last picture is from the model after 50
epochs. As is shown in the graphs, the model trained for 110 epochs shows much higher
accuracy of both localization and classification than the one trained for 50 epochs, even
though the loss just decreases for less than 2. What’s more, the model trained for 50
epochs performs so poorly that most tumors in the images cannot be detected, and
hence mAP cannot be calculated.

50 A
100 4

150 4

200 A

250

0 100 200

Figure 13: Prediction Examples of the Model in Experiment A

ExperimentB - Increasing Learning Rate Considering that the SSD algorithm
in Experiment A converges quite slow and each epoch takes too much time beyond
expectation, we tried to increase learning rate to accelerate the training process. The
original learning rate schedule was: 1073 for the first 90 epochs, 10~ for the 91-100
epochs, and 107° for the last 10 epochs. Note that the learning rate was set to be

12

stepped down descent in order to improve convergence. We doubled the learning rates
setting the schedule to be 2 x 1073, 2 x 1074, 2 x 107° correspondingly.

However, this change led to explosion of loss in several epochs. For example, at the
130th epoch, the training loss rockets from 23 to 1.3 x 10'°, and the validation loss from
20 to 1.15 x 108,

ExperimentC - Enlarging Batch Size In general, enlarging batch size will acceler-
ate processing speed with same amount of data and determine the direction of descent
more accurately when training. Therefore, we tried training setting with larger batch
size.

Here are the training setting and results:

Batch Size | Steps Per Epoch | Epoch | Validation Loss Speed
300 2 300 9.24585 87s/epoch
200 3 300 8.64310 80s/epoch

Table 1: Comparison between Different Batch Sizes

In each epoch, both of these two processes went through all images in training set once.
This is different from the setting in Experiment A, in which all images were undergone
for 10 times in each epoch. So after 300 epoch, the performance of these two model
should be similar to that of the model in Experiment A after 30 epochs, whose vali-
dation loss is 7.024. However, training process with larger batch size not only shows
worse performance on validation loss, but also on training speed. This phenomenon is
kind of irrational and unexpected. As a result, it seems to be better to make the batch
size remain unchanged.

ExperimentD - Using Separable Convolution To accelerate training process, we
attempted to use separable convolution layers to take place of convolution layers in our
model. The basic idea is that the number of parameters to be trained of separable
convolution layers is fewer than that of the normal convolution layers, which is due to
the difference of convolution procedure.

For instance, for the first layer in our model shown before, input channel is 3, output
channel is 64, kernel size is 3 x 3. If we use normal convolution layer, the parameter
number is (3 x 3 x 3+ 1) x 64 = 1792, that is, (input channel x kernel size + bias) x
output channel. If we use separable convolution layer, the parameter number will be
3x3x34+(3x1x1+1)x64 = 283, that is, (input channel xkernel size)+(input channelx
1 x 1+ bias) x output channel. The concrete procedure of normal convolution is that
the input channel data is traversed by 64 different convolution kernels of size 3 x 3.

13

And the concrete procedure of separable convolution is kind of complicated: the input
channel data is traversed by 3 different kernels of size 3 x 3 x 3 to obtain 3 middle
channels, then the middle channels is traversed by 64 different kernels of size 3 x 1 x 1
to combining the information learnt from different input channels.

Here is the parameter calculated by the model.summary() function of keras. The left
two columns are for normal convolution, while the right two are for separable convolu-
tion. As we can see, the computation above is exactly correct, and the number of total
parameters is only 20% of that before replacement.

convl_1(Conv2D) 1,792 convl_1(SeparableConv2D) 283
Total Parameters | 23,715,730 Total Parameters 4,820,525

Table 2: Comparison between Using Normal Conv2D and SeparableConv2D

We conducted several experiments under different settings on batch size and steps per
epoch, traversing all data once in each epoch. It can be observed that SeparableConv2D-
model takes more time to train per epoch, and this is a bit irrational since this model
has much fewer parameters than Conv2D-model. We think this phenomenon may be
because of some differences of underlying logic and backend algorithm between separable
convolution and normal convolution. Positive sign is that SeparableConv2D-model
converges faster than Conv2D-model in terms of epochs (but slower in terms of real
time). So if we can find some way to modify the backend algorithm, our training
procedure may speed up.

Batch Size | Steps Per Epoch | Epoch | Validation Loss Speed
100 6 150 4.36554 245 s/epoch
200 3 150 4.80492 245 s/epoch
300 2 150 5.03458 245 s/epoch

Table 3: Comparison between Using Normal Conv2D and SeparableConv2D

ExperimentE - Testing and Retraining on More General Cases The results
in Experiment A seems to be excellent, but as we mentioned, all images were prepro-
cessed to be centered at tumor, which may mislead the training and teach the model
wrong character that all tumors are in the center of the picture. This may lead to low
accuracy when detecting the cancer in which tumor is near the edge of the mammo-
gram. To test and verify, we fed some uniformly cut pictures into the trained model
to see the performance. The mAP is 0.284 (0.31 AP for benign case and 0.257 AP for
malignant case), which shows that there are some overfitting problems. But as is shown
in prediction examples, when detecting non-center tumor, the model also shows high
accuracy on both localization and classification. The problem is that the confidence

14

value is much lower than that when detecting center tumor, which leads to the drop of
mAP.

Benign, AP: 0.310 Malignant, AP: 0.257

o
o

0.9

o
o

0.8 1

o
@

0.7 4

e
S

0.6 4

-
o

precision
o
«
precision
o
n

0.4+

o
kS

=

w
o
W

o
N

0.1+

°
j

0.0 1

°
o

0.0 0l 0.2 03 0.4 0.5 0.6 0.7 0.8 09 10 0.0 0.1 0.2 0.3 0.4 {11 3 0.6 0.7 0.8 09 10
recall recall

Figure 14: Precision-Recall Curve of SSD-256 Model in Experiment A

Malignant: 0.82

i ‘a,
@

CNEIaTAE 0.60
. ‘Malignant: 0.51

I.N.h:lig.nant i

Figure 15: Prediction examples of the model in Experiment A on uniformly cut picture
dataset

We trained the model on uniformly cut data set (consist of 3500 images for training

set again, 500 for validation set, and 329 for test set) for 20 epochs with setting 100
for batch size and 35 for steps per epoch. Below is the evaluation result and training

15

records of whole 130 epochs (110 epochs in Experiment A, 20 epochs in Experiment E).
The loss is steadily declining and mAP is steadily rising, showing the model is able to
abstract more features once being fed corresponding data. However, the mAP tested
on tumor-centered test set falls, encouraging that in futural training, the training set
should involve tumor in different location.

Uniformly Cut Test set

Tumor-centered Test Set
Benign AP 0.742
Malignant AP 0.54
mAP 0.641

Benign AP
Malignant AP
mAP

0.394
0.332
0.363

Table 4: Comparison between Using Normal Conv2D and SeparableConv2D

Benign, AP: 0.742

precision

precision
°
&

Malignant, AP: 0.540

00 01 02 03 04 05 06 07 08 09 10

recall

0.0 01 02 03 04 05 06 07 08 09 1.0

recall

Figure 16: Precision-Recall Curve of Retrained SSD-256 Model on Tumor-centered Test

Set

16

Benign, AP: 0.394 Malignant, AP: 0.332

)
)

o
©
°
©

°

©
o
@

°
3

e

3

0.6

e
Y

precision
precision
o
&

0.4+

o
kY

°
[

°
Y

°
o

e
S

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 10 0.0 01 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
recall recall

Figure 17: Precision-Recall Curve of Retrained SSD-256 Model on Uniformly Cut Test
Set

Training Records

SSD 256 retrained

loss

——val loss

0 10 20 30 40 50 60 70 80 90 100 110 120
epoch

Figure 18: Training Records for 110 epochs in Experiment A Plus 20 Retraining Epochs

5 Future Works

Unlike some typical classification problem, such as training the neural network to distin-
guish whether the image contains a dog or cat, classifying mammograms is complicated
in its nature as the tumor is usually located in a small region of the whole image.
Hence, the ternary label of mammograms may not be an obvious feature for the neural
network to learn.

17

Furthermore, the mammograms usually have low contrast and sometimes it’s even hard
for radiologists to interpret. Applying appropriate techniques for enhancing the image
contrast before training could be a plausible approach to improve the performance of
neural network.

In addition, VGG16 in its nature is designed for classifying images into 1000 categories,
which leads to the great number of parameters in the last two dense layers. However,
in our study, the mammograms only need to be classify into 3 categories, which implies
a possibility of applying some hyperparameter tuning algorithm to find a better hyper-
marater set that could reduce the computing time without sacrificing the performance.
Besides, it is also possible to employ pre-trained neural network with large dataset such
as ImageNet to extract rudimentary features of the mammograms.

In the evaluation of mammogram classification, we only considered the accuracy but
not the sensitivity and specificity. It is possible to take more metrics into consideration.
We implemented 10-fold cross validation method and could test it in the future. Besides,
we found a new database which we could use to increase the training set.

6 Acknowledgements

This work was an internship project at The University of Tennessee, sponsored by the
National Science Foundation through Research Experience for Undergraduates (REU)
award, with additional support from the Joint Institute of Computational Sciences.
We would like to express our gratitude to Dr. Raymond Chan and Dr. Kwai Wong
for mentoring the project and for helpful discussions and comments. We also thank
the Extreme Science and Engineering Discovery Environment (XSEDE) for providing
allocations.

References

[1] Ferlay, J., Héry, C., Autier, P. Sankaranarayanan, R. (2010). Global burden of
breast cancer. Breast cancer epidemiology, 1-19, Springer.

[2] Xi, P.et.al. (2018). Abnormality Detection in Mammography using Deep Convolu-
tional Neural Networks. IEEE International Symposium on Medical Measurements
and Applications (MeMeA). doi:10.1109/MeMeA .2018.8438639

[3] Wu, N. et.al. (2019). Deep Neural Networks Improve Radiologists’ Performance in
Breast Cancer Screening. arXiv:1903.08297.

18

[4] Ting, F. F., Tan, Y. J., Sim, K. S. (2019). Convolutional neural network im-
provement for breast cancer classification. Ezpert Systems with Applications, 120,
103-115.

[5] Hui, J. (2018). mAP (mean Average Precision) for Object Detection. Re-
trieved from: A Medium Corporation(US): https://medium.com/@jonathan_
hui/map-mean-average-precision-for-object-detection-45c121a31173

[6] Simonyan,K., Zisserman, A. (2014). Very Deep Convolutional Networks for Large-
Scale Image Recognition . arXiv:1409.1556

[7] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A.
C. (2016, October). SSD: Single shot multibox detector. Furopean conference on
computer vision (pp. 21-37). Springer, Cham.

[8] Ferrari, P. (2018). SSD: Single-Shot MultiBox Detector implementation in Keras.
GitHub repository. https://github.com/pierluigiferrari/ssd_keras

[9] Hassan, M. (2018). VGG16 — Convolutional Network for Classification and Detec-
tion. Retrieved from: https://neurohive.io/en/popular-networks/vggl6/

[10] Chollet, F. (2015). Keras: Deep learning library for theano and tensorflow. Re-
trieved from: https://keras.io/k,7(8).

19

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://github.com/pierluigiferrari/ssd_keras
https://neurohive.io/en/popular-networks/vgg16/
https://keras. io/k, 7(8)

	Introduction
	Background
	Objectives
	Related Work

	Data
	Methods
	Classification
	Object Detection

	Experiments
	Classification
	Automatic Lesion Detection

	Future Works
	Acknowledgements

