
Neural Network Hyperparameter Optimization with
MagmaDNN and OpenDIEL

Students: Qiqi Ouyang (CUHK), Daniel McBride (UTK), Rocco Febbo (UTK)
Mentors: Kwai Wong (UTK), Stan Tomov (UTK), Junqi Yin (ORNL)

A

B

The flow chart below indicates the process of the early stopping
algorithm, Learning Curve Matching (LCM). After setting the
hyperparameters, the model will go through every checkpoint, where the
stopping action will be triggered based on the comparison between the
model’s learning curve and old recorded learning curves.

●Trials: Sets that contain a
single sample for every
hyperparameter.
●Learning Curves: Arrays of
the numerical values of the
loss function at certain
stages during a single
training.
●Checkpoints: Points where
the decision is made to
abort the training or not.

During the hyperparameter tuning, LCM algorithm has two main stages:
the accumulation stage and the checking stage.

• In the accumulation stage, only
cumulative points are activated.
The value of the loss function at
cumulative points and the
corresponding final performances
during every complete training will
be collected for the next stage.

• In the checking stage, both the
cumulative points and checkpoints
will be activated. Besides collecting
needed data as in the accumulation
stage, curve comparison and early
stopping will also be implemented.

At every checkpoint the Euclidean distances between the new learning
curve and the old learning curves will be calculated. Then the most similar
complete training will be identified based on these distances, and its
performance will be viewed as the predicted performance of the model in
training. The rank percentage of the predicted performance will decide
whether to early stop the training. The result of experiments based on
MNIST is shown below. LCM gets a slightly better and more stable
performance than random search.

The University of
Tennessee

The Chinese University of
Hong Kong

Joint Institute for
Computational Sciences

National Science
Foundation

• Introduction •

What is a hyperparameter?
Hyperparameters are neural network
presets, like network architecture,
learning rate, batch size, and more.
Why do we need to optimize the
hyperparameters? A poor choice of
hyperparameters can cause a network’s
accuracy to converge slowly or not at all.
What are some obstacles to optimizing hyperparameters? The Curse of
Dimensionality: the search space grows exponentially with each new
hyperparameter. Also, highly irregular (nonconvex, nondifferentiable)
search spaces are the norm.
What are some standard hyperparameter optimization techniques?
Classic approaches include Grid Search and Random Search, while more
modern approaches are Early Stopping, Evolutionary Algorithms, and Dynamic
Learning Rate.

• Future Work •

• Dynamic Learning Rate •• Learning Curve Matching •

• Research Objectives •

• Extend the HPC machine learning framework, MagmaDNN, to include
more hyperparameter tuning, including evolutionary functionality.
• Improve the OpenDIEL Grid Search hyperparameter tuning application.
• Implement a novel hyperparameter tuning algorithm amenable to use on
supercomputing scale using modern optimization techniques.
• Explore the performance of this new algorithm on various network
architectures, comparing it to classic benchmarks like random search.
• Experimentally demonstrate the benefits of dynamic learning rate over
static learning rate.

• Implement Population Based Training using OpenDIEL.
• Extend MagmaDNN functionality to include hyperparameter tuning with
Learning Curve Matching.

The following graphs show the results obtained from an experiment
comparing static to dynamic learning rate. Using MagmaDNN, a network
with three fully connected layers was trained on MNIST with stochastic
gradient descent. Batch size was constant across trials, at 32 per iteration.

Graph A plots learning rate against
number of training iterations. It
shows a gray line, a trial with static
learning rate of ~0.0016, while the
orange lines plot trials with
decaying learning rate with variable
initial values. The decay rate was 5%
every 100 iterations.
Graph B shows that all of the
dynamic trials achieved greater
accuracy more quickly. The Y-axis
is accuracy, while the X-axis is
number of training iterations.
These plots affirm, in our case, the
benefit of dynamic learning rate.

Graph C maps the final accuracy of the
dynamic trials against their initial learning rate
values. The greatest final accuracy is steadily
approached from below, as initial learning rate
increases. The best final accuracy is achieved
with an initial learning rate value of 0.01, and
then for greater initial learning rate values, the
final accuracy exhibits irregular behavior.
These results confirm that lower learning rates, while slowing
convergence, contribute to stability.

C

https://tow
ardsdatascience.com

• OpenDIEL Grid Search •

Since hyperparameter tuning is so
computationally intensive it is desirable to
have a distributed system which manages
the process. Thankfully, the process is
inherently parallelizable due to the small
amount of data required to do a very large
amount of work.

The flow chart on the upper
right shows how the grid engine is
implemented in OpenDIEL. One
single process manages sending
the hyperparameters to the other
processes. They train, then send
their metrics back to process 0.
The graph below it shows the
output of the system when
training across a 3D grid.

Acknowledgements: National Science Foundation, Joint Institute of Computational Sciences (UT-ORNL), Extreme Science and Engineering Discovery Environment (XSEDE), BP HPC Team.
References: Bergstra and Bengio, Random Search for Hyperparameter Optimization, 2012; Goodfellow et al, Deep Learning, 2016; Jaderberg et al, Population Based Training of Neural Networks, 2017.

Population Based Training of Gradien Descent Learning Rates
The plot below shows the evolution of learning rate schedules of a
population of MagmaDNN neural networks training in parallel on the
MNIST dataset, with above specifications. The algorithm is implemented
with MPI, with distributed, supercomputer scale application in mind. Each
network dynamically tracks its fitness rank among the population. The least
fit quartile is replaced by evolved copies of the most fit quartile, their
learning rates adaptively updated via perturbation of the parent values.

