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The flow chart below indicates the process of the early stopping 
algorithm, Learning Curve Matching (LCM). After setting the 
hyperparameters, the model will go through every checkpoint, where the 
stopping action will be triggered based on the comparison between the 
model’s learning curve and old recorded learning curves.

●Trials:  Sets that contain a 
single sample for every 
hyperparameter.
●Learning Curves: Arrays of 
the numerical values of the 
loss function at certain 
stages during a single 
training.
●Checkpoints: Points where 
the decision is made to 
abort the training or not.

During the hyperparameter tuning, LCM algorithm has two main stages: 
the accumulation stage and the checking stage. 

• In the accumulation stage, only 
cumulative points are activated. 
The value of the loss function at 
cumulative points and the 
corresponding final performances  
during every complete training will 
be collected for the next stage.

• In the checking stage, both the 
cumulative points and checkpoints 
will be activated. Besides collecting 
needed data as in the accumulation 
stage, curve comparison and early 
stopping will also be implemented.

At every checkpoint the Euclidean distances between the new learning 
curve and the old learning curves will be calculated. Then the most similar 
complete training will be identified based on these distances, and its 
performance will be viewed as the predicted performance of the model in 
training. The rank percentage of the predicted performance will decide 
whether to early stop the training.  The result of experiments based on 
MNIST is shown below. LCM gets a slightly better and more stable 
performance than random search.
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• Introduction •

What is a hyperparameter? 
Hyperparameters are neural network 
presets, like network architecture, 
learning rate, batch size, and more.
Why do we need to optimize the 
hyperparameters? A poor choice of 
hyperparameters can cause a network’s 
accuracy to converge slowly or not at all.
What are some obstacles to optimizing hyperparameters? The Curse of 
Dimensionality: the search space grows exponentially with each new 
hyperparameter.  Also, highly irregular (nonconvex, nondifferentiable) 
search spaces are the norm.
What are some standard hyperparameter optimization techniques? 
Classic approaches include Grid Search and Random Search, while more 
modern approaches are Early Stopping, Evolutionary Algorithms, and Dynamic 
Learning Rate.

• Future Work •

• Dynamic Learning Rate •• Learning Curve Matching •

• Research Objectives •

• Extend the HPC machine learning framework, MagmaDNN, to include 
more hyperparameter tuning, including evolutionary functionality.
• Improve the OpenDIEL Grid Search hyperparameter tuning application.
• Implement a novel hyperparameter tuning algorithm amenable to use on 
supercomputing scale using modern optimization techniques.
• Explore the performance of this new algorithm on various network 
architectures, comparing it to classic benchmarks like random search.
• Experimentally demonstrate the benefits of dynamic learning rate over 
static learning rate.

• Implement Population Based Training using OpenDIEL.
• Extend MagmaDNN functionality to include hyperparameter tuning with 
Learning Curve Matching.

The following graphs show the results obtained from an experiment 
comparing static to dynamic learning rate.  Using MagmaDNN, a network 
with three fully connected layers was trained on MNIST with stochastic 
gradient descent.  Batch size was constant across trials, at 32 per iteration.

Graph A plots learning rate against 
number of training iterations.  It 
shows a  gray line, a trial with static 
learning rate  of ~0.0016, while the 
orange lines plot trials with 
decaying learning rate with variable 
initial values. The decay rate was 5% 
every 100 iterations.
Graph B  shows that all of the 
dynamic trials achieved greater 
accuracy more quickly. The Y-axis 
is accuracy, while the X-axis is 
number of training iterations.  
These plots affirm, in our case, the 
benefit of dynamic learning rate.

Graph C maps the final accuracy of the 
dynamic trials against their initial learning rate 
values.  The greatest final accuracy is steadily 
approached from below, as initial learning rate 
increases.  The best final accuracy is achieved 
with an initial learning rate value of 0.01, and 
then for greater initial learning rate values, the 
final accuracy exhibits irregular behavior.
These results confirm that lower learning rates, while slowing 
convergence, contribute to stability.
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• OpenDIEL Grid Search •

Since hyperparameter tuning is so 
computationally intensive it is desirable to 
have a distributed system which manages
the process. Thankfully, the process is 
inherently parallelizable due to the small 
amount of data required to do a very large 
amount of work.

The flow chart on the upper 
right shows how the grid engine is 
implemented in OpenDIEL. One 
single process manages sending 
the hyperparameters to the other 
processes. They train, then send 
their metrics back to process 0. 
The graph below it shows the 
output of the system when 
training across a 3D grid.
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Population Based Training of Gradien Descent Learning Rates
The plot below shows the evolution of learning rate schedules of a 
population of MagmaDNN neural networks training in parallel on the 
MNIST dataset, with above specifications.  The algorithm is implemented 
with MPI, with distributed, supercomputer scale application in mind.  Each 
network dynamically tracks its fitness rank among the population.  The least 
fit quartile is replaced by evolved copies of the most fit quartile, their 
learning rates adaptively updated via perturbation of the parent values.


