
Out-of-Core Cholesky Factorization

Algorithm on GPU and the Intel

MIC Co-processors
Ben Chan (Chinese University of Hong Kong)

Nina Qian (Chinese University of Hong Kong)

Mentors: Ed D’Azevedo (ORNL)

Shiquan Su (UTK)

Kwai Wong (UTK)

5th Augest 2013

Outline

• Motivation: Large scale radiosity problem

– Introduction to view3d program

– Connection with out-of-core algorithm

– Performance on Keeneland (GPU) and Beacon
(MIC)

• Factorization Algorithm

– Theory

– Performance on Keeneland (GPU)

– Using MIC

View3D for large scale radiosity problem

• By Stepthen-Boltzmann’s

 equation, radiation reflects

 the objects temperature.

• View factor measures the

 radiation which leaves one

 surface and strikes another

 surface.

View3D program: Parallel

calculation of the view factor

between any two surfaces and

generate the view factor

matrix F.

https://www.cs.duke.edu/courses/cps124/s
pring04/notes/08_rendering/

Connection to out-of-core algorithm

• Stepthen-Boltzmann’s equation: ,

where .

 Transformed radiosity matrix G: (SPD)

• Radiosity problem  solve system of linear equation

 matrix factorization  out-of-core algorithm

View3D on Keeneland (GPU) and Beacon (MIC)

 m Various of pairs of surfaces

With potential
obstruction

Without potential
obstruction

Calculate
inside CPU

 GPU
(Keeneland)

 MIC
(Beacon) http://naturalfrequency.com/articl

es/shadingcalculations

Implementation of View3D on MIC

• Beacon: each node has 16 processors and 4 MIC cards

– Assign one MIC card to each core

– Use offload with shared VM

Data in shared virtual memory:

 Unobstructed part:
 Offload to MIC

Obstructed part:
Do in Host

Synchronize DEV_ans

Performance on Keeneland (GPU) and Beacon (MIC)

• Case comparison:
– L shape case (no obstruction)

– Total number of surfaces: 20000

– Processor grid: 6 x 6, NB = 64

• Future directions for view3d based on MIC:
– Enhance stability

– Multiple MIC cards

– Directive offload

Determine possible obstruction Calculation of unobstructed cases

Keeneland Beacon Keeneland Beacon

1.795 sec 2.149 sec 6.507 sec 111.09 sec

Outline

• Motivation: Large scale radiosity problem

– Introduction to view3d program

– Connection with out-of-core algorithm

– Performance on Keeneland (GPU) and Beacon
(MIC)

• Factorization Algorithm

– Theory

– Performance on Keeneland (GPU)

– Using MIC

Cholesky Factorization

4 8 2
8 17 3
2 3 11

→
2 0 0
4 1 0
1 −1 3

2 4 1
0 1 −1
0 0 3

• Factorize any symmetric positive-definite

(SPD) matrix into the form 𝐿 × 𝐿𝑡

• Rewrite 𝐴𝑥 = 𝑏 into
𝐿𝑦 = 𝑏

𝐿𝑡𝑥 = 𝑦

How?

Suppose such factorization exists:

Consider a block matrix form of 𝐴 and 𝐿

𝐴 =
𝐴11 𝐴21

𝑡

𝐴21 𝐴22
; 𝐿 =

𝐿11 0
𝐿21 𝐿22

From 𝐴 = 𝐿 × 𝐿𝑡, we have

𝐿11 = 𝑐ℎ𝑜𝑙 𝐴11

𝐿21 = 𝐴21 𝐿11
𝑡 −1

𝐿22 = 𝑐ℎ𝑜𝑙 𝐴22 − 𝐿21 𝐿21

𝑡

Right-looking method and Left-looking method

OOC Approach of the Factorization

• Hardware accelerators in parallel computers

– GPU in Kraken and Keeneland

MIC in Beacon

– Computing “core” of the algorithm (or “device”)

Data stored “Out-of-Core” (the “host”)

• Combine two standard methods together

Right-looking method

Left-looking method

OOC Approach of the Factorization

• Use a 2D-block cyclic distribution;

column-major storage

• Chop the matrix into panels

• Copy a panel into core

 left-looking method

 right-looking method

• Continue to next panel

Host-to-Host Data Transfer

0

50

100

150

200

250

300

350

400

Right-looking Left-looking

copy A time/s

copy B time/s

 Right-looking Left-looking

copy A data (TB) 25.4 96.5

copy B data (TB) 2.5 22.9

Timing results are affect by the workload

of different processes!

• Tested on Keeneland

• Matrix size 518400

• Block size 64

• Processor grid 27x27

• Chop 12 panels

Host-to-Host Data Transfer

0

50

100

150

200

250

300

350

400

Right-looking Left-looking

proc_0 copy A time/s

proc_0 copy B time/s

proc_1 copy A time/s

proc_1 copy B time/s

 Right-looking Left-looking

copy A data (TB) 25.4 96.5

copy B data (TB) 2.5 22.9

Performance on Keeneland

• Tested cases

– Total cases: 117

• Successful: 65

– Matrix size N from 49152 to 552960

– NB = 32, 64, 128

– Processor grid: 3 x 3, 6 x 6, 12 x 12, 15 x 15,

 21 x 21, 24 x 24, 27 x 27

– Most cases fix 2-panels

Performance on Keeneland

• Biggest successful case:

– Matrix size: N=552960 (73% of maximum size)

– Processor grid: 27x27, NB=64

– Divided into 12 panels

• Total time: 1366 secs, performance: 56 GFLOPS/C

• Observations:

– set NB = 128 for small case
• Better performance

(calculation > communication)

– set NB = 64 for big case
• More stable N > 400000

• Better performance

(communication > calculation)

• Observations:

– Fixed matrix size, smaller processor grid has higher performance

 (less host-to-host data transfer)

Outline

• Motivation: Large scale radiosity problem

– Introduction to view3d program

– Connection with out-of-core algorithm

– Performance on Keeneland (GPU) and Beacon
(MIC)

• Factorization Algorithm

– Theory

– Performance on Keeneland (GPU)

– Using MIC

Coding for MIC

• C/C++ codes for the algorithm

offload to GPU  offload to MIC

– Allocate/free memory

– Host-device data transfer

– CUBLAS function calls

• Compiling and Linking

Allocate/free device memory

• Use pragma offload

alloc_if() free_if() modifiers

• Problems
– length() and alloc_if() creates a mapping between host memory

and device memory within a certain interval of addresses

– the pragma offload directives are not designed to support what
we want!

Allocate/free device memory

Host-device data transfer

• Use pragma offload again!

• Use a buffer

Allocate buffer memory on host

Allocate buffer memory on device with alloc_if()

• 1- Copy Y into buffer on host

• 2- Offload transfer buffer to device

• 3- Copy buffer on device into dY

CUBLAS function calls

Compilation

Compilation:

mpiicc -c ooc_offload.cpp

ooc_offload.o, ooc_offloadMIC.o

Linking:

mpiicc -o pdlltdriver2.exe\
 main.cpp lib.a ooc_offload.o \
 -llibraries

pdlltdriver2.exe

Code tested on Beacon

• Use 4 MICs per node, 64 nodes

• Matrix size 368640

• Block size 512

• Processor grid 12x12

• Chop two panels

  47.10 GFLOPS per process

  less than 1/3 of the speed with GPU!

Future Work

• MIC

– Asynchronous offload

– More optimization

• Algorithm

– More parallelism ?

• Performance evaluation

Out-of-Core Cholesky Factorization

Algorithm on GPU and the Intel

MIC Co-processors
Ben Chan (Chinese University of Hong Kong)

Nina Qian (Chinese University of Hong Kong)

Mentors: Ed D’Azevedo (ORNL)

Shiquan Su (UTK)

Kwai Wong (UTK)

5th Augest 2013

