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GREAT SMOKY MOUNTAINS
NATIONAL PARK

® Most visited national park in the United States of
America (~9,000,000 visitors/year).

© The majority of park visitors drive through the
park to various hiking, camping or sightseeing
destinations, resulting in substantial emissions of
nitrogen oxides (NOx) from vehicle exhaust.
NOx, when combined with hydrocarbon emissions
from natural vegetation can lead to ozone, a
primary component of photochemical smog,

which can be damaging to plants, animals and
humans.

@ The primary goal of our project is to initially
assess how NOx emissions from visitor traffic in
the park may affect concentrations of ground-
level (tropospheric) ozone.
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ACCESS

® It is a one-dimensional column model that
utilizes a current state-of-the-science, near
explicit atmospheric chemistry mechanism to
simulate tropospheric ozone (and other
compounds) from the ground level to the top
of the planetary boundary layer (PBL) (~2 km
above ground level).
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INITIAL TESTS

@ Initially our plans were this:

= Assess how ACCESS runs on an HPC platform and
attempt to optimize it.

o The graph below shows the results from our initial
tests on Kraken versus my personal laptop.
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A SLIGHT CHANGE OF PLAN...

® We decided not to use Kraken because it has
strict time constraints on simulations (i.e., 24
hrs maximum for a simulation for a regular user).
This was not acceptable, as we needed to run
the full ACCESS program soon and did not have
time to parallelize the code.
= The serial code of ACCESS itself takes around 30 CPU
hours to run; this would not be possible to do on
Kraken.
@ Solution: Abandon the thought of using Kraken,
and use Star1 (a computer at University of
Tennessee), which has no time constraints.




SIMULATION RESULTS FROM STAR1

® We did two simulations on Star1:

= 15t simulation: Neutral Atmospheric Conditions

o With this simulation, we did not get much vertical
transport, which meant that we did not get much NOx
transported above the canopy, for possible reactions.
Because of this, we decided to do a second simulation.

= 2"d simulation: Unstable Atmospheric Conditions

o More enlightening results came from this simulation.
There is more transportation of NOx above the canopy.
This allowed for a more accurate representation of the
impact of NOx on the photochemistry above the

canopy. These are the results used in the upcoming
slides.
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STRUCTURE OF SEVERAL OF THEE
SPECIES YOU WILL BE SEEING
GRAPHS OF

119.7 pm
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@ From top-left clockwise:
= Nitrogen dioxide (NO,)
Nitric oxide (NO)
Nitrogen oxides (Nox)
Methacryloyl peroxy nitrate (MPAN)
Peroxyacetyl Nitrate (PAN)
Ozone (0O,)
Isoprene (CsHjg)
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Height (m)

SPECIES GRAPIHS (OZONE (0,))
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SPECIES (PEROXYACETYL NITRATE

(PAN))
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Ozone Budget at Varying
NOx Emission Levels
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CHEMICAL PRODUCTION (PAN)

PAN Budget at Varying NOx
Emission Levels
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CHEMICAL PRODUCTION (MPAN)

MPAN Budget at Varying NOx Emissi
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VERTICAL FLUX (OZONE)

Ozone Vertical Flux at Varying NOx Emission Levels
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VERTICAL FLUX (PAN)
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VERTICAL FLUX (MPAN)
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VERTICAL FLUX (ISOPRENE)
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THOUGHTS ON WHAT THE GRAPHS
SAY ABOUT OZONE

® With increasing traffic within the canopy the
direct effect is a reduction of ozone
concentrations within the canopy because of
the direct reaction with NO and ozone.

= REACTION: NO + O, > NO, + 0,

® We are only seeing minor enhancements in
ozone concentration above the canopy.




CONCLUSIONS

@ Even though we are not seeing direct
increases in ozone from NOx emissions, we
are seeing enhanced production of PAN and
MPAN above the canopy, which, when
transported downwind, can contribute to
enhanced ozone formation in areas with

little or no NOx emissions.




PHOTOCHEMICAL CONVERSION OF
PAN (OR MPAN) BACK TO NO,

@ Image Credit: Department of Atmospheric Sciences, University of
Was mgton Seattle, WA.

@ URL: http://www.atmos.washington.edu/~thornton/PANs.html




CONCLUSIONS (CONT.)

® Under the environmental conditions studied so
far in our simulations, only minor amounts of
local ozone production above the canopy are
predicted. However, the simulation results
suggest that the enhancements in PAN and MPAN
formation from visitor traffic in the park may
lead to increased ozone concentrations
downwind from major highways within the park.
Ozone data within and downwind of the park will
be further analyzed to test the model prediction.

® Results and further analysis of this work will be
published in a journal article at a later date.




CREDITS

@ Image on section introduction slides is from
Wikimedia Commons and is an image of Baxter
Creek Trail in Great Smoky Mountains National
Park.

® The ACCESS diagram (Slide 8) and the graphical
representation of reactions that produce ozone
(Slide 5) were both done by Dr. Rick D. Saylor.

® Molecules on Slide 14 all come from Wikimedia
commons with the exception of PAN and MPAN,
which come from the University of Washington
website (URL given on slide 32).

@ All other photos and/or diagrams are credited on
their slide.




