
Joint Institute of Computational Science (JICS) 
CSURE Internship 

 
 

Submitted by 
Ciara Thompson 

 
 
 

Submitted to 
Dr. Kwai Wong 

 
 
 

In requirements of the JICS CSURE Internship 
June 2013 

 

 

 

 

 

 

 

 

 



Introduction 

The Joint Institute of Computational Sciences (JICS) was established by the Oak ridge 

National Laboratories and the University of Tennessee to advance scientific discovery and state-

of-the-art engineering and to further knowledge of computational modeling and simulation by 

contributing to the education of a new generation of scientists and engineers well-versed in the 

application of computational modeling and simulation for solving the most challenging scientific 

and engineering problems. The Computational Science for Undergraduate Research Experiences 

(CSURE) REU program is a student Internship program organized by JICS which serves to 

expose undergraduate students to emergent computational science fields in five domain sciences: 

chemistry, material sciences, systems biology, engineering mechanics, atmospheric sciences, and 

parallel solvers on emergent platforms 

 

 

 

 

 

 

 

 

 



Goal 

 My project for this summer is entitled the Multi-physics Simulation of the Biomedical 

Processes – Heart Electrophysiology. The goal of this project is to utilize computer programs to 

study and simulate the multi-physics phenomena of the heart. These phenomena are the 

interactions between the electrical, physiological, mechanical, and fluid interactions of the heart. 

My focus during this summer’s internship is to program the electrical and physiological 

interactions of the heart and simulate them using parallel computing. 

Steps to Achieve Goal 

The steps that I am going to take to achieve my goal during this internship are as follows 

• Study and understand the governing equations for simulating the heart: 

Monodomain Model and Beeler-Reuter Model. 

• Develop the geometry and mesh of the heart. 

• Program the electrical models: Beeler-Reuter and Monodomain model.  

• Examine the interaction between the electrical and physiological effects of the 

heart. 

 

 

 

 



Training 

In order to utilize the computer programs I was trained in some programming software. I 

was trained on how to use the LINUX Operating system. This OS will be used throughout this 

internship because it allows the user to remotely access another computer. I also received 

training on the VI editor, C, C++, FORTRAN, Python and Bash shell, Makefile, Open MP, and 

Parallel programming. In terms of preprocessing and post processing tools I was trained to use 

Cubit, Visit and Paraview. 

Project 

Overview 

The electrical stimulus of the heart begins in the Sino atrial node. The Sino atrial node 

spontaneously produces electrical current without being simulated. The gates of the cells are bias 

and allow certain ions that are allowed to flow in or out. The difference in ion concentration 

produces a potential difference. The potential difference developed in the surrounding cells 

around the Sino atrial node causes the electric current to be propagated. This current is also sent 

to the Atrioventricular node. The Atrioventricular node is the connection between the atrial and 

ventricular cells. The electrical current is then passed on to the ventricular cells as a result of the 

potential difference developed in them. The resultant of this current causes the beating of the 

heart. There are two main models that describe the electrical processes at the tissue level: the Bi-

domain and the Monodomain model.  

 

 



Bidomain Model 

The Bidomain model is based on the tissue of the heart and consists of two components: 

intracellular and extracellular.  

∇ ∙ 𝑀!  ∇𝑣 +   ∇ ∙   𝑀!∇𝑢! =   
𝜕𝑣
𝜕𝑡
+    𝐼!"# 𝑣, 𝑠 , (1)	
  

Equation 1 is the equation of the Bidomain model. 

The Bidomain model is difficult to solve and computationally demanding. As a result, 
assumptions are made which simplifies the model into the Monodomain model.  

Monodomain Model 

The Monodomain model will be used during this project because it is easier it solve and 
computationally less demanding. Using the operator splitting scheme, the Monodomain model 
can be split into three equations. 

𝜕𝑣
𝜕𝑡

=   −𝐼!"# 𝑣, 𝑠 , 𝑣 𝑡!   = 𝑣!  (2)	
  

𝜕𝑠
𝜕𝑡
=   𝑓 𝑣, 𝑠 , 𝑠 𝑡!   = 𝑠!    (3)	
  

𝜕𝑣
𝜕𝑡

=
Λ

1 + Λ
∇ ∙ 𝑀!∇𝑣 ,        𝑣 𝑡!   = 𝑣!

!    (4)	
  

Equations 2 and 3 are solved simultaneously at different time steps and equation 4 is solved 
linearly at different time steps. The solutions to these equations describes the electrical processes 
at the tissue level 

Beeler-Reuter Model 

The equations to model the electrical currents have been developed and include the 
Hodgkin- Huxley, the Beeler-Reuter and the Luo Rudy model amongst others. 

The Beeler-Reuter Model describes the electrical stimulus in the cells (the action 
potential). The model is based on experimental data from a guinea pig. It is based on the 
concentration level of Potassium, Calcium, and Sodium in the cells of the heart and their 
surroundings. This difference in concentration level in the cells and the surroundings causes an 
electrical current to develop.  



The Beeler-Reuter model is still used in spite of being the first model depicting the 
transmembrane potential of the ventricular cells because it is easier to compute than some of the 
newer models. The Taylor Series method is used to compute the new values of the potential 
across the membrane as well as the new values of Calcium in the cell. The equations 
representing the gates are ordinary differential equations which can be solved to obtain the 
general solution and hence the values at the next time step. 

Programming the Beeler-Reuter Model 

The ordinary differential equations associated with the Beeler-Reuter Model can be solved 
easily. The Beeler-Reuter model is solved using the explicit time marching scheme called the 
Finite Element Euler Method. By using this scheme the only information needed are the initial 
conditions and the equations.  

The time range for the Beeler- Reuter model is 0-400ms which was determined through 
experimentation. The Taylor series for the potential for the model is  

𝑉!!! = 𝑉!   +   
𝑑𝑉
𝑑𝑡   ∆𝑡 + 𝑂 ∆𝑡 !                (1) 

where 𝑂 ∆𝑡 ! is the error 

The smaller ∆𝑡  is the smaller the error from the computations will be. ∆𝑡   is the time step. 

𝑑𝑉
𝑑𝑡 = −

𝑖!! + 𝑖!! + 𝑖𝑁𝑎 + 𝑖𝐶𝑎 − 𝑖!"#!$%&'
𝐶𝑚           (2) 

𝑖!! -Potassium current 
𝑖!!- Another Potassium current 
𝑖𝑁𝑎- Sodium current  
𝑖𝐶𝑎- Calcium current  
𝑖!"#!$%&'- External stimulus that is generated by the Sino atrial node and passed to the Atrioventricular 
node 
!"
!"

- Change in voltage with time 

The equations representing the currents are: 

𝑖!! =
4 exp 0.04 𝑉 + 85 − 1

exp 0.08 𝑉 + 53 + exp 0.04 𝑉 + 53 +
0.2 𝑉 + 23

1− exp −0.04 𝑉 + 23           (3) 

𝑖!! = 𝑥! ∙ 0.8 ∙
exp 0.04 𝑉 + 77 − 1
exp 0.04 𝑉 + 35         (4) 



𝑑𝑥!
𝑑𝑡 = 𝛼!! 1− 𝑥! − 𝛽!!𝑥!                (5) 

𝑖𝑁𝑎 = 𝑔𝑁𝑎 ∙𝑚! ∙ ℎ ∙ 𝑗 + 𝑔𝑁𝑎𝐶𝑎 (  𝑉 − 𝐸𝑁𝑎)          (6) 

𝑑𝑚!

𝑑𝑡 = 𝛼!! 1−𝑚! − 𝛽!!𝑚!          (7) 

𝑑ℎ!
𝑑𝑡 = 𝛼!! 1− ℎ! − 𝛽!!ℎ!          (8) 

𝑑𝑗!
𝑑𝑡 = 𝛼!! 1− 𝑗! − 𝛽!!𝑗!          (9) 

𝑖𝐶𝑎 = 𝑔𝐶𝑎 ∙ 𝑑 ∙ 𝑓 ∙ 𝑉 − 𝐸𝐶𝑎             (10) 

𝑑𝑑!
𝑑𝑡 = 𝛼!! 1− 𝑑! − 𝛽!!𝑑!        (11) 

𝑑𝑓!
𝑑𝑡 = 𝛼!! 1− 𝑓! − 𝛽!!𝑓!              (12) 

𝐸𝐶𝑎 =   −82.3− 13.0287 ln 𝐶𝑎!!           (13) 

𝐶𝑎!!! = 𝐶𝑎! +
𝑑𝐶𝑎
𝑑𝑡 ∙ ∆ℎ          (14) 

𝑑𝐶𝑎
𝑑𝑡 =   −10!! ∙ 𝑖𝐶𝑎 + 0.07 ∙ 10!! − 𝐶𝑎             (15) 

𝛼  𝑜𝑟  𝛽 =
𝐶1exp  { 𝐶2 ∙ 𝑉 + 𝐶3 + 𝐶4 ∙ (𝑉 + 𝐶5)

exp  [𝐶6 ∙ 𝑉 + 𝐶3 ]+ 𝐶7               (16) 

 
C1-C7 are constants 
∆ℎ =    ∆!

!"
	
  	
  

𝑉- Voltage of the previous time 
𝑔𝑁𝑎 = 4  
𝑔𝑁𝑎𝐶𝑎 = 0.003  
𝐸𝑁𝑎 = 50  
𝑔𝐶𝑎 = 0.09  
  
	
  
The ordinary differential equations 5, 7, 8, 9, 11, and 12 are solved for their general solution. The 
general solution of all the ODE’s is    



𝑔 𝑡 = 𝐶𝑒∆!(!!!!) +
𝛼

𝛼 + 𝛽
 

g is used to represent x, j, h, m, f, and d.  

The value of the next time step is solved using the current value as the initial condition therefore 
the time is always equal to    ∆𝑡.  

Hence       

  𝐶 = 𝑔(0) +
𝛼

𝛼 + 𝛽
 

𝑔(0)-Initial value or previous value 

𝑔 𝑡 = 𝑔 0 +
𝛼

𝛼 + 𝛽
∙ 𝑒∆!(!!!!) +

𝛼
𝛼 + 𝛽

 

 

After solving for x, j, h, m, f, d the equations below can be solved for 

𝑖!! = 𝑥! ∙ 0.8 ∙
exp 0.04 𝑉 + 77 − 1
exp 0.04 𝑉 + 35         (4) 

𝑖𝑁𝑎 = 𝑔𝑁𝑎 ∙𝑚! ∙ ℎ ∙ 𝑗 + 𝑔𝑁𝑎𝐶𝑎 (  𝑉 − 𝐸𝑁𝑎)          (6) 

Solving for 𝑖𝐶𝑎 involves solving for the concentration of Calcium in the next time step. 𝐸𝐶𝑎  is 
dependent on the  Calcium of the next time step. 

Hence using the Taylor series expansion the next value for Calcium can be solved for using the 
equation 

𝐶𝑎!!! = 𝐶𝑎! +
𝑑𝐶𝑎
𝑑𝑡 ∙ ∆ℎ           

!"#
!"
   is a function of Calcium. The calcium value used is the calcium of the current time step. 

𝑑𝐶𝑎
𝑑𝑡 =   −10!! ∙ 𝑔𝐶𝑎 ∙ 𝑑 ∙ 𝑓 ∙ 𝑉 + 82.3+ 13.0287 ln 𝐶𝑎!!    + 0.07 ∙ 10!! − 𝐶𝑎            

Using the current time step value of Calcium and the calculated f and d which is the value for the 
next time step the value of !"#

!"
   can be calculated for. 

After !"#
!"
    has been calculated for, the value of Calcium in the next time step is calculated for 

and then the value of 𝐸𝐶𝑎  and 𝑖𝐶𝑎 can be calculated. 



After obtaining all the values !"
!"

 can be calculated for using the equation below   
𝑑𝑉
𝑑𝑡 = −

𝑖!! + 𝑖!! + 𝑖𝑁𝑎 + 𝑖𝐶𝑎 − 𝑖!"#!$%&'
𝐶𝑚          

𝑖!"#!$%&' is the initial stimulus current of 30𝜇𝐴/𝑐𝑚! which is from the atrioventricular 
node. Finally the potential voltage across the membrane can be calculated for using the equation 
below  

𝑉!!! = 𝑉!   +   
𝑑𝑉
𝑑𝑡   ∆𝑡 + 𝑂 ∆𝑡 !                 

In Matlab these equation are calculated for at each time step using the For Loop. The 
number of iterations is dependent on ∆𝑡 and the results are plotted using the plot function.  

The Matlab code, the results of the plot and the constants C are present in the Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Meshing 

There were three model used during this project, the heart model, the thin membrane 
model and the cubic model. A step-by-step procedure was used to develop the heart model. 
Geometry and mesh information can be found in the table below 

Model	
   Dimensions(cm)	
  
Node	
  interval	
  

(cm)	
   Mesh	
  Type	
  
No	
  of	
  
Nodes	
  

No	
  of	
  
elements	
  

Thin	
  
membrane	
   10x10x1	
   0.281	
   Hexahedral	
   7220	
   5476	
  

Cubic	
   10x10x10	
   0.281	
   Hexahedral	
   5202	
   4352	
  

Heart	
  
Shown	
  on	
  
model	
   6.51	
   Tetrahedral	
   1047	
   4356	
  

 

The models were created using the CUBIT software.	
  CUBIT is a full-featured software toolkit 
for robust generation of two- and three-dimensional finite element meshes (grids) and geometry 
preparation (Sandia). 

A. Thin membrane model 

 

 

B. Cubic Model 

 

 

Figure 1- Thin membrane model meshed with hexahedral mesh 

Figure 2- Cubic membrane model meshed with hexahedral mesh 



C. Heart Model 

 

 

Figur3 consists of three parts created separately and merged together to form a very simple 
model of the heart. The mesh type used on this figure is the hexahedral mesh. 

 

 

Figure4 is a more complex model of the heart made up of two spheres that were constructed 
according to dimensions and merged to form the model above. The mesh type used is the Tet 
Mesh. 

 

 

Figure 3- Model of heart with Hex mesh 

Figure 4-­‐	
  Model 2 with Tet mesh	
  

Figure 5- Model 3 with Tet mesh 

70 

60 

18 

50 

30 



Figure5 is an adaptation of Figure4. It was made by adding surfaces to cover the holes and 
extending those surfaces to form end caps. After the formation of the end caps two cylinders 
were added to portray inlets and outlets. 

Figure 4 was the heart model used to run the cases. 

 

Program 

The program used during this project was coded by Andrew Kail, a graduate student at 
the University of Tennessee Knoxville and one of my mentors. The program is utilized to run 
cases meshed with tetrahedral, hexahedral, triangle or quadrilateral meshes. The basic structure 
of the program is displayed in the image below. 

 

 

Data is input as a Patran file into the program. The program also allows certain parameters to be 
manually input into the program. Some of these parameters are runtime, time step and diffusion..  
The program runs the first time log or time step. In each time log the data is partitioned, 
distributed and calculated. The Forward Euler numerical analysis method is used so the program 
runs the calculation at each time step until convergence is reached. The output is saved as a Tec 
plot file and uploaded into Paraview for visualization. 

 

 

 

 

Figure 6- Flow Chart demonstrating how the program runs 



Case 1: Single Beat  

All three models were run for one beat and visualized in Paraview. The run time for all 

models in this case was 400ms and was chosen because the plot of the Beeler-Reuter model 

shows that voltage returns to its initial conditions before that time.  

A. Thin Membrane Model  
• Time step: 1ms 
• Diffusion: 0.01 
• Boundary condition applied to 1/16th of nodes.  

 
 

From the figure we deduced that the wave front and wave back propagated as expected. 

B. Cubic Model  
• Time step: 1ms 
• Diffusion: 0.1 
• Boundary condition applied to 1/32th of nodes

 
 

Figure 7- Simulation of thin membrane for single beat case 

Figure 8- Simulation of cubic membrane for single beat case 



The cubic model also displayed both the wave front and the wave back of the wave although the 

wave back was not as pronounce as the wave front. A range of diffusion values where tested and 

it was determined that the range of diffusion values that worked for this model was between 0.07 

and 0.13 with 0.07 producing the best results. 

C. Heart model 
• Time step: 1ms 
• Diffusion: 10 
• Boundary condition applied to edge of large opening

 
 

The results of the heart simulation displayed a discrepancy in the wave back. The wave front 

propagated as expected with the voltage increasing sequentially with time. However, the wave 

back seemed to diffuse across the whole model instead of resembling the wave front 

propagation. 

Case2: Running Multiple Beats 

Both the thin membrane and cubic model worked very well for the single beat. The next 

step was to attempt multiple beats. Multiple beats on the thin membrane was successful. We 

could see both the wave front and the wave back in both beats with the second beat depicting a 

better wave propagation that the first beat.  

Figure 9- Simulation of heart membrane for single beat case 



  

 

The cubic model on the other hand did not produce the same results. Propagation of the second 

beat was seen only in the region where the boundary conditions where applied.  

 

 

The same case was run on the heart model . The only evidence of a multiple beat was a slight 

simulation lasting for about a second. With the failure of both the cubic and heart model we 

proceeded to run test to discover what the issue with the code was. 

 

Figure 10- Simulation of thin membrane for 2 beats 

Figure11 – Incomplete propagation of second beat in 
cubic model  

 

 



Testing the Diffusion Code 

The diffusion code was run on the thin membrane model. The results are shown below 

 

The diffusion reaction equations worked perfectly. 

Testing the ODE Model 

The ODE model was tested to determine if it was giving the right results. The Ode model 

was used to run two and ten beats and the plots from both of these beats are shown below. This is 

a plot of a node in the simulated region. 

 

 

Figure12 – Simulation of diffusion model only   

 

 

Figure13 – Plot of 2 beats and 10 beats using ODE model only   

 

 



A plot of the nodes in the simulated region, the mid region and at the other end of the simulated 

region of the cubic model showed the results below. 

 

The plot above revealed that the problem lay between the coupling of the PDE model of the first 

beat and the ODE model of the second beat. To test this conclusion, the ODE model was 

reinitialized during the second beat so that it had all the initial conditions of the first beat except 

the voltage which was the calculated result from the first beat. The cubic model was run with 

these changes and visualized in Paraview. The second beat propagated as expected.  

 

 

 

Figure 14 – Plot of 3 nodes in cubic model  

 

 

Figure 15 – Simulation of 2 beats with cubic model  

 

 



The plot of the node in the stimulated region showed the results below 

 

The results were similar to that obtained from the ODE model and the Beeler-Reuter model. The 

second beat had a lower peak that the first beat but this was because the calculated voltage 

potential, after the first beat, for the second beat was different from the initial voltage value. 

From the results it was determined that the ODE model was very sensitive to the vector potential 

returning from the first beat. 

 

Reducing the Time step of the ODE Model 

Since most numerical analysis methods depend on the    ∆𝑡 , this was decreased in the ODE 

model. One iteration in the PDE model consisted of ten iterations in the ODE model. After this 

change the model performed as expected. The results on the cubic and heart model are shown 

below. 

 

 

Figure 16 – Plot of node in simulated region 

 

 



A. Cubic Model 

 

 

B. Heart Model 

 

 

 

Figure 17– Simulation of 2 beats with cubic model without reinitializing 

 

 

Figure 18– Simulation of 2 beats with heart model without reinitializing 

 

 



Appendix 

Matlab Code  

	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

close all 
  
tic; 
%[]Starts program timer. 
  
clc; 
%[]Clears command window. 
  
clear; 
%[]Clears variable workspace. 
  
format long g; 
%[]adjusts the format of the command window output. 
  
tmax=400; 
Vinit=-84.62; 
dt=0.02; 
% Parameters 
  
tx=0:dt:400; 
nt=tmax/dt+1; 
V1(1:1:nt,1)=0; 
V1(1)=Vinit; 
Ca(1:1:nt,1)=0; 
Ca(1)=10^-7; 
f(1:1:nt,1)=0; 
f(1)=0.983; 
d(1:1:nt,1)=0; 
d(1)=0.0001; 
m(1:1:nt,1)=0; 
m(1)=0.0011; 
h(1:1:nt,1)=0; 
h(1)=0.99869; 
j(1:1:nt,1)=0; 
j(1)=0.99887; 
x(1:1:nt,1)=0; 
x(1)=0.0074; 
ix1(1:1:nt,1)=0; 
ix1(1)=0; 
ik1(1:1:nt,1)=0; 
ik1(1)=0; 
iNa(1:1:nt,1)=0; 
iNa(1)=0; 
iCa(1:1:nt,1)=0; 
iCa(1)=0; 
gNa=4; 
gNaCa=0.003; 
ENa=50; 
gCa=0.09;  
ECa(1:1:nt,1)=0; 
dVdt(1:1:nt,1)=0; 
Cm=1; 
stmts=10; %[ms] 
stmte=11; %[ms] 
% [] Initial Values  
  
  

	
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
for n=1:nt-1 
    
    if (tx(n)>= stmts && tx(n)<=stmte ) 
        ie= 30; 
    else  
        ie=0; 
    end  
    %[]Stimulation  
   
    V=V1(n); % Initial Voltage 
     
    % Potassium Current 
    i1=4*(exp(0.04*(V+85))-1)/(exp(0.08*(V+53))+exp(0.04*(V+53))); 
    i2=0.2*(V+23)/(1-exp(-0.04*(V+23))); 
    ik1(n+1)=0.35*(i1+i2); 
    
    %X Current 
    %x 
     
    c1=0.0005;    %[ms^-1] 
    c2=0.083;    %[ms^-1] 
    c3=50;    %[ms^-1] 
    c4=0;    %[ms^-1] 
    c5=0;    %[ms^-1] 
    c6=0.057;    %[ms^-1] 
    c7=1;    %[ms^-1] 
    C1=0.0013;    %[ms^-1] 
    C2=-0.06;    %[ms^-1] 
    C3=20;    %[ms^-1] 
    C4=0;    %[ms^-1] 
    C5=0;    %[ms^-1] 
    C6=-0.04;    %[ms^-1] 
    C7=1;    %[ms^-1] 
     
    a=(c1*exp(c2*(V+c3))+c4*(V+c5))/(exp(c6*(V+c3))+c7); 
    b=(C1*exp(C2*(V+C3))+C4*(V+C5))/(exp(C6*(V+C3))+C7); 
    x0=x(n)-(a/(a+ b)); 
    x(n+1)= x0* exp(-(a+b)*dt) + a/(a+b); 
    ix1(n+1)=x(n+1)* 0.8*((exp(0.04*(V+77))-1)/exp(0.04*(V+35))); 
     
     
    
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

% Sodium Current 
    %m   
    cm1=0;    %[ms^-1] 
    cm2=0;    %[ms^-1] 
    cm3=47;    %[ms^-1] 
    cm4=-1;    %[ms^-1] 
    cm5=47;    %[ms^-1] 
    cm6=-0.1;    %[ms^-1] 
    cm7=-1;    %[ms^-1] 
    Cm1=40;    %[ms^-1] 
    Cm2=-0.056;    %[ms^-1] 
    Cm3=72;    %[ms^-1] 
    Cm4=0;    %[ms^-1] 
    Cm5=0;    %[ms^-1] 
    Cm6=0;    %[ms^-1] 
    Cm7=0;    %[ms^-1] 
  
    am=(cm1*exp(cm2*(V+cm3))+cm4*(V+cm5))/(exp(cm6*(V+cm3))+cm7); 
    bm=(Cm1*exp(Cm2*(V+Cm3))+Cm4*(V+Cm5))/(exp(Cm6*(V+Cm3))+Cm7); 
     
    m0=m(n)-(am/(am+ bm)); 
    m(n+1)=m0* exp(-(am+bm)*dt) + am/(am+bm); 
     
    ch1=0.126;    %[ms^-1] 
    ch2=-0.25;    %[ms^-1] 
    ch3=77;    %[ms^-1] 
    ch4=0;    %[ms^-1] 
    ch5=0;    %[ms^-1] 
    ch6=0;    %[ms^-1] 
    ch7=0;    %[ms^-1] 
    Ch1=1.7;    %[ms^-1] 
    Ch2=0;    %[ms^-1] 
    Ch3=22.5;    %[ms^-1] 
    Ch4=0;    %[ms^-1] 
    Ch5=0;    %[ms^-1] 
    Ch6=-0.082;    %[ms^-1] 
    Ch7=1;    %[ms^-1] 
       
    ah=(ch1*exp(ch2*(V+ch3))+ch4*(V+ch5))/(exp(ch6*(V+ch3))+ch7); 
    bh=(Ch1*exp(Ch2*(V+Ch3))+Ch4*(V+Ch5))/(exp(Ch6*(V+Ch3))+Ch7); 
    h0=h(n)-(ah/(ah+ bh)); 
    h(n+1)= h0* exp(-(ah+bh)*dt) + ah/(ah+bh); 
     
    %j 
    cj1=0.055;    %[ms^-1] 
    cj2=-0.25;    %[ms^-1] 
    cj3=78;    %[ms^-1] 
    cj4=0;    %[ms^-1] 
    cj5=0;    %[ms^-1] 
    cj6=-0.2;    %[ms^-1] 
    cj7=1;    %[ms^-1] 
    Cj1=0.3;    %[ms^-1] 
    Cj2=0;    %[ms^-1] 
    Cj3=32;    %[ms^-1] 
    Cj4=0;    %[ms^-1] 
    Cj5=0;    %[ms^-1] 
    Cj6=-0.1;    %[ms^-1] 
    Cj7=1;    %[ms^-1] 
    
    aj=(cj1*exp(cj2*(V+cj3))+cj4*(V+cj5))/(exp(cj6*(V+cj3))+cj7); 
    bj=(Cj1*exp(Cj2*(V+Cj3))+Cj4*(V+Cj5))/(exp(Cj6*(V+Cj3))+Cj7); 
    j0=j(n)-(aj/(aj+ bj)); 
    j(n+1)=j0* exp(-(aj+bj)*dt) + aj/(aj+bj); 
     
    iNa(n+1)=(gNa*m(n+1)^3*h(n+1)*j(n+1)+gNaCa)*(V-ENa); 
     

	
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%Calcium Current 
    %f 
    cf1=0.012;    %[ms^-1] 
    cf2=-0.008;    %[ms^-1] 
    cf3=28;    %[ms^-1] 
    cf4=0;    %[ms^-1] 
    cf5=0;    %[ms^-1] 
    cf6=0.15;    %[ms^-1] 
    cf7=1;    %[ms^-1]d 
     
    Cf1=0.0065;    %[ms^-1] 
    Cf2=-0.02;    %[ms^-1] 
    Cf3=30;    %[ms^-1] 
    Cf4=0;    %[ms^-1] 
    Cf5=0;    %[ms^-1] 
    Cf6=-0.2;    %[ms^-1] 
    Cf7=1;    %[ms^-1] 
     
    af=(cf1*exp(cf2*(V+cf3))+cf4*(V+cf5))/(exp(cf6*(V+cf3))+cf7); 
    bf=(Cf1*exp(Cf2*(V+Cf3))+Cf4*(V+Cf5))/(exp(Cf6*(V+Cf3))+Cf7); 
    f0=f(n)-(af/(af+ bf)); 
    f(n+1)=  f0* exp(-(af+bf)*dt) + af/(af+bf);  
    %d 
    cd1=0.095;    %[ms^-1] 
    cd2=-0.01;    %[ms^-1] 
    cd3=-5;    %[ms^-1] 
    cd4=0;    %[ms^-1] 
    cd5=0;    %[ms^-1] 
    cd6=-0.072;    %[ms^-1] 
    cd7=1;    %[ms^-1] 
     
    Cd1=0.07;    %[ms^-1] 
    Cd2=-0.017;    %[ms^-1] 
    Cd3=44;    %[ms^-1] 
    Cd4=0;    %[ms^-1] 
    Cd5=0;    %[ms^-1] 
    Cd6=0.05;    %[ms^-1] 
    Cd7=1;    %[ms^-1] 
     
    ad=(cd1*exp(cd2*(V+cd3))+cd4*(V+cd5))/(exp(cd6*(V+cd3))+cd7); 
    bd=(Cd1*exp(Cd2*(V+Cd3))+Cd4*(V+Cd5))/(exp(Cd6*(V+Cd3))+Cd7); 
    
    d0=d(n)-(ad/(ad+ bd));  
    d(n+1)=d0*exp(-(ad+bd)*dt)+ad/(ad+bd); 
     
    %Ca 
    dh=dt/10; 
    p=-10^-7; 
    c=0.07*(10^(-7)-Ca(n)); 
    k= (V+82.3+13.0287*log(Ca(n))*f(n+1)*gCa*d(n+1))*p; 
    dCadt=k+c; 
     
    for i=1:10 
        Ca1(1)=Ca(n); 
        Ca1(i+1)= Ca1(i)+ (dCadt*dh); 
    end 
     
    Ca(n+1)=Ca1(11); 
    ECa(n+1)=-82.3-13.0287*log(Ca(n+1)); 
    
    iCa(n+1)= gCa*d(n+1)*f(n+1)*(V-ECa(n+1)); 
 

	
  



	
  

	
  

	
  

	
  

	
  

 

 

 

 

 

 

 

 

 

 

 

% Transmembrane Potential 
  
    dVdt(n)=-(ik1(n+1)+ix1(n+1)+iNa(n+1)+iCa(n+1)-ie)/Cm; 
     
    V1(n+1)= V1(n) + dVdt(n)*dt; 
     

	
  



Graphs plotted with Matlab Code 

 

 

 

 

 

 

 

 



References  

1. "Cplusplus.com	
  -­‐	
  The	
  C	
  Resources	
  Network."	
  Cplusplus.com	
  -­‐	
  The	
  C	
  Resources	
  Network.	
  

Cplusplus.com,	
  n.d.	
  Web.	
  10	
  July	
  2013.	
  	
  

2. Sundnes,	
  Joakim,	
  Glenn	
  T.	
  Lines,	
  Xing	
  Cai,	
  Bjorn	
  F.	
  Nielsen,	
  Kent-­‐Andre	
  Mardal,	
  and	
  

Aslak	
  Tveito.	
  Computing	
  the	
  Electrical	
  Activity	
  in	
  the	
  Heart.	
  Berlin:	
  Springer,	
  2006.	
  Print.	
  

Ser.	
  1.	
  	
  

3. https://cubit.sandia.gov/	
  

	
  

 

 

 

 

 


