Q

-
E)

>
il

LSTM

By PG Cambie-Fabris,
Joshua Zingale

Outline

CUDA
MAGMA
MagmaDNN
Tensors
Operations

o Compute trees

Layers
o LSTM

<ANVIDIA.

CUDA.

CPU serial code Vector Addition
(memory allocation and kernel launch)
__global__ void VecAdd(float* A, float* B, float* C)
{
int 1 = threadIdx.x;
GPU parallel code lull = sl s 2L
(kernel run) }

int main()

CPU serial code

(memory deallocation) VecAdd<<<1 , N>>>(A, B, C);

Sheldon Axler

Linear Algebra
Done Right

Third Edition

@ Springer

MagmaDNN

Why LSTM?

0.9*0.9*0.9*0.9...=0;1.1*1.1*1.1...=inf
The Vanishing Gradient Problem

9E o€,
== = 3)
% 1<<T %
IE, (i)& Ix, t‘l'xA)
= = e e ha (4)
0 ISEK:S' Oxe Oxi. 08
Oxe ax r , -
™ Hk_oT_, = ’)I"!kW.,,dmywx.-m ()

Wree ~small =» Vanishing

W ~ large = Exploding

Formula Source: Razvan Pascanu et al. (2013)

Deep Learning A-Z © SuperDataScience

What is LSTM?

e |ong Short-Term Memory
e Recurrent Neural Network

Recurrent network

—— output layer

input layer (class/target)

LSTM Uses

EXTENDED FORECAST ,.A...

UPMATTERS.COM

mmmml, SAT | SUN

“"—%‘ o .-s‘ 4{“ .eg ! .q, z-s.
&n? |

420s530sPM|| 30°30s || 30s-40° rewsnow Il 30°30s || 30°-30s

WINTRY | COLDER || AMsNOw (RaINsNow | FEWSNOW | ey sNow | | FEw sNow

PRECIP ||| SUPERIOR || "PMSUN || CHANCE SHOWERS | | SHOWERS

NNW 10+ || NNW 5-15 ' $5-10 WSW 10+ §| WNW 10+| | NNE 5-15 NE 5-15

| 30s | 30s | 30s || 40s_ | 30s |
B 10s B 20s i 205 20s; 20s/ 20s

w

o o tanh o

h’t—l
xtl LSTM cell

’l:t O'(ZBtU +ht 1W)

Gt 1= a(azth—th 1Wf)

0 = a({U°% + hy_ 1W°)

C, = tanh (:thg - ht_1Wg)
he), — a(ft x Cp_1 + 23 * (:’t)

h; = tanh(C}) * oy

LSTM Implementation Requirements

e Forward Pass E—
e Backward Pass
Downstream Gradient Upstream Gradient

9000

First Implementation

e Combine pre-existing operations with new ones
e CPU and GPU
e Forward and Backward method

o Each individual operations’ eval and gradient

Needed Operations

e Currently implemented
Sigmoid
Tanh
Matrix Multiplication
Matrix Addition
Element-wise Product
e Not Implemented

o Slice

o Concatenation

O O O O O

Slice and Concat

e Slice

e (Concat

tl

12
ol 02 ol
. 02
o3 o3

Slice and Concat Testing

e Both implemented on CPU and GPU

e Forward and Backward tested with examples on both

o Slice/Concatenate passed in tensor and compare output
o Pass in upstream gradient and compare downstream

Tensor size of {1, 2, 3, 4}

{

| ©.00008,
| 5.32767,
| 6.79296,

}
{

| 8.30965,
| 6.71149,
| 4.17486,

}
}

Below is the given tensor sliced about
Tensor size of {1, 1, 2, 4}

{

| 6.79296,
| 4.17486,

}
}

1.31538,
2.18959,
9.34693,

0.34572,
0.07698,
6.86773,

9.34693,
6.86773,

7.55605,
0.47045,
3.83502,

0.53462,
3.83416,
5.88977,

3.83502,
5.88977,

4.58650,
6.78865,
5.19416,

5.29700,
0.66842,
9.30437,

axis 1 and by index 2 on GPU

5.19416, |
9.30437, |

Problems in Development cont.

user1@REU1902-HP-Z800-Workstation: ~/magma/magmadnn/src/compute/reducesum

result = new Tensor<T>(bprops[©@]->get_shape(), {NONE, {}},
bprops[©]->get_memory_type());
math::sum(bprops, result);

Add these two lines

user1@REU1902-HP-Z800-Workstation: ~/magma/magmadnn/src/compute/reducesum

for (unsigned int r = x_1dx; r < n_rows; r += x_stride) {

for (unsigned int ¢ = y 1dx; ¢ < n_cols; ¢ += vy stride) {

out[r * n_cols + ¢] = (axis == 1) ? grad[r] : grad[c];

}

We had to swap
these two.

(the order shown in the image is correct)

First Implementation Analysis

" W G\ rcesses

)

O
O

Calculations
Training on small data

Shortcomings

©)

Adding operation overhead takes too much
time for time sequences >10
m Perhaps exponential growth
Compute tree eval issues
Can not train on large data

Operation Overhead

user1@REU1902-HP-Z800-Workstation: ~/magma/magmadnn/src/compute/reducesum

56 // IeBlY): With this uncommented, the simplelstm constructs exponentially slower at larger
57 // sequence lengths (~lengths >9)

58 // But with it commented, the GPU cannot work with any layer

59

60 #if defined(MAGMADNN_HAVE_CUDA)

61 // Use default stream for CUDA kernels

62 // this->custream_ = nullptr;

63 this->set_custream(nullptr);

64

65 this->set_cudnn_handle(magmadnn::internal: :MAGMADNN_SETTINGS->cudnn_handle);
66

67 this->set_cublas_handle(magmadnn::internal: :MAGMADNN_SETTINGS->cublas_handle);
68

69 this->set_async(false);

70 #endif

71

Compute Tree Reevaluation

1 2 3 4 5
Time step

No. times matmul is evaluated

Second Implementation

e GPUonly
e Use asingle LSTM Operation
o Cuda code from previous operations
o New Cuda code for intermediate calculations
e [Forward pass methodology
o Kernels used
o MAGMA sgemm and dgemm
o Value caching
e Backward pass methodology
o Kernels used
o MAGMA sgemm and dgemm
o Use of store values

Second Implementation Analysis

W Resolved Issues
o Operation Overhead
o Evalissues
p Ongoing Problems
<«

o Large data
o Runs out of memory

Testing

e (Compared calculations against
python script
o Script verified against Dr. Wong
test case
o With and without return
seguences
e T[aught to predict zeros

NOTE: This is the result of a forward pass through
It should be 0.771982

Tensor size of {1, 1, 1, 1}

{

| ©.77198, |
}
}

NOTE: This is the gradient values calculated with
he inputs. It should be [[-0.05589539 -0.03405172],
6, -0.12997548]]:

Tensor size of {1, 1, 2, 2}

{

|-0.05590, -0.03405, |
|-0.20060, -6.12998, |

}
}

NOTE: This is the gradient values calculated with
f. It should be [[-0.01333808], [-0.08002848]]
Tensor size of {1, 1, 2, 1}

{

|-0.01334, |
|-0.08003, |
}

}

NOTE: This is the gradient values calculated with
i. It should be [[-0.01152304], [-0.03248399]]
Tensor size of {1, 1, 2, 1}

{

|-0.01152, |
|-0.03248, |

}
}

NOTE: This is the gradient values calculated with
0. It should be [[-0.12468496], [-0.71785738]]
Tensor size of {1, 1, 2, 1}

{

|-0.12468, |
|-06.71786, |

}
i

the LSTMOp.

respect to t

[-6.2005999

respect to W

respect to W

respect to W

Performance

- MagmaDNN
EnsorfFlow

20 -

Time (seconds)

10 A

0 50 100 150 200 250 300
Batch Size
input -> lstm(b, return_sequences =true) -> lstm(1, false) -> output
random initialization, all target values set to zero, 200 epochs, 300 input/output pairs

Future LSTM Work

Understand the problem with the first implementation
o i.e. why is does it get so slow? what makes it evaluate
exponentially more operations?
Fix memory issue with second implementation
Add support for dynamically changing the input/output
sequence length
o This would likely require reworking the NeuralNetwork
class

Future MagmaDNN Work

ADD ERROR MESSAGES segmentation fault.

Q O

Cannot Rename Cannot Rename

A file with the same name already Specify another name.
exsists. Specify another name.

Ok Ok

Future MagmaDNN Work cont.

e Abstract methods do not have clear descriptions of their
responsibilities.

