
MagmaDNN
Integration and Applications

Stephen Qiu (University of Tennessee)
Julian Halloy (University of Tennessee)

Introduction

- MAGMA is a collection of Linear Algebra (LA) routines for heterogeneous
architectures which take advantage of GPUs as well as multi-core CPUs for
faster and more efficient computation

Introduction

- MagmaDNN is a deep learning framework that utilizes the high performance
calculations of MAGMA for common Neural Network calculations.

- Currently they are two separate packages. MagmaDNN is dependent on
MAGMA to run, but MAGMA can be run independently.

Research Goals

- Prove MagmaDNN works correctly given the MLP and CNN examples
- Optimize MagmaDNN
- Integrate MagmaDNN into MAGMA without losing the speed and functionality

that each had before
- Make MagmaDNN readily accessible to researchers utilizing MAGMA by

creating a DNN submodule similar to MAGMA-sparse

MLP

MLP

MLP Output

w1+:
0.1497807161327

648
w2+:

0.1997807161327
648
w3+:

0.2497511436323
716
w4+:

0.2995022872647

Print Gradients

template <typename T>

void GradTable<T>::print() {

printf("GradTable\n");

printf("%s\n", std::string(30, '=').c_str());

printf("Number of tensors = %i\n", _table.size());

int itr = 0;

for (auto &entry : this->_table) {

itr++;

printf("%s Tensor %i\n%i value(s): ", entry.first->get_name().c_str(), itr, entry.second->get_size());

for (unsigned int i = 0; i < entry.second->get_size(); i++){

printf("%.5g%s", entry.second->get(i), (i == entry.second->get_size()-1) ? "\n" : ", ");

}

}

printf("\n");

}

neuralnetwork.cpp -> optimizer.cpp -> gradtable.cpp

Print Gradients

void GradientDescent<T>::minimize(op::Operation<T> *obj_func, const std::vector<op::Operation<T> *> &wrt, bool print) {
typename std::vector<op::Operation<T> *>::const_iterator vit;

this->_obj_func = obj_func;

/* evaluate if need be */

this->_obj_func->eval(false);

/* build the gradients */

this->table.clear();
op::get_grad_table(wrt, this->_obj_func, this->table);

if (print){

table.print();

}

/* now update each one */

for (vit = wrt.begin(); vit != wrt.end(); vit++) {
this->update((*vit), table.get(*vit));

}

}

Print Gradients

virtual magmadnn_error_t fit(Tensor<T> *x,

Tensor<T> *y, metric_t &metric_out, bool

verbose = false, bool print = false);

Mean Squared Error

Sums error over the batch and divides by the batch size

Does not sum both errors or divide by 2 for our MLP example

Solution: add reducesum to MSE for the other dimension

1 2

3 4

5 6

7 8

3

7

11

15

Process of Integration

- Cloned the MAGMA bitbucket and created our own private github repository

Integration into MAGMA - File Organization

- magma/
- docs/
- example/
- fortran/
- include/
- interface_cuda/
- magmablas/
- magmadnn/
- src/
- etc.

- /usr/local/magma/lib
- libmagma.a
- libmamga.so
- libmagmadnn.a
- libmagmadnn.so
- pkgconfig/

Integration into MAGMA

- Since most of MAGMA is written primarily in C and MagmaDNN is mostly
written in C++, the code is generally compatible with each other, allowing us to
easily merge the two together.

- Issues:
- MagmaDNN has its own tensor class to store data, MAGMA is only matrices

- Row major vs Column major

Data Storage

- MAGMA stores data only as matrices
- MagmaDNN uses its own tensor class to store the data

- it is very common for the data neural networks interact with to be 3 or more dimensions

Ex.
RGB data
Batched data
2d Conv with multiple filters

Row vs Column major

- Affects how the matrix is stored in memory
- Affects how the code is supposed to access

the data through incrementing.

Solutions

Choose to create a new tensor class within MAGMA

or

Create an interface between MAGMA and MagmaDNN

Interface

- Matrix to tensor interface
- Allows the reading of a column

major matrix and storing it as a
row major tensor with user
defined parameters

- Takes the matrix address and
dimension of the wanted tensor
as inputs

- Compatible for 1-4 dimension
tensors

Interface

- The matrix to tensor interface will allow data from MAGMA to be easily used
with MagmaDNN to implement some neural network algorithms

Input ---> MAGMA ---> manipulated data ---> M_to_T --> Tensor ---> MAGMADNN --> NN --> training or inference

https://medium.com/analytics-vidhya/mathematics-and-statistics-behind-machine-learning-part-1-eede0e152d57

Test Interface

- Combination of MAGMA code and Magmadnn code.
- Reads in the MNIST data and stores into a magma matrix

- Read the image data from a matrix into a Magmadnn tensor

- Train a model/Load in a pretrained model and pass the tensor through for inference

- Return the predicted value

Interface Example

Interface Results

- The accuracy of the code depends on how well the trained/loaded model is.

- Test code shows that the function written can be used interchangeably
between MAGMA and MagmaDNN.

Tensor operations

- Created a tensor matrix multiplication function to allow for higher order
mathematical calculations.

- [k, m, n] x [n, l] -> [k, m, l]
- Current confined to 3D tensor x 2D matrix with one similar axis to contract

upon
- Speed is comparable to the np.einsum() with the tensor matmul function

reaching an average speed of 27 μs vs einsum’s speed of 25 μs on a
[4, 50, 50] x [50, 50] tensor multiplication

Applications

- Neural network calculations

- Physics and engineering

- Basis for other similar tensor operations

Future Works

Some simple universal DNN functions such as MLP and CNN

Python interface / GUI for MagmaDNN to allow for easier use to those with a
smaller programming background

Edge device implementation - utilizing the speed advantages of MagmaDNN on a
device such as the Jetson Nano

Thanks

